Truck trailer
This problem models the minimum-time maneuvering of a truck with two trailers while respecting steering, velocity, and articulation constraints. The goal is to move the vehicle from an initial configuration to a target position and orientation while minimizing final time and reducing excessive trailer articulation.
System Description
The system has 7 states and 2 controls:
States:
\[x_2, y_2\]
: position of the rear trailer axle\[\theta_0, \theta_1, \theta_2\]
: orientations of the truck and two trailers\[v_0\]
: longitudinal velocity of the truck\[\delta_0\]
: steering angle of the truck
Controls:
\[\dot{v}_0\]
: acceleration of the truck\[\dot{\delta}_0\]
: steering rate
Auxiliary variables:
\[\beta_{01} = \theta_0 - \theta_1\]
\[\beta_{12} = \theta_1 - \theta_2\]
Constraints
- Time horizon: $1 \le t_f \le 1000$
- State constraints:
\[-\pi/2 \le \theta_0(t), \theta_1(t) \le \pi/2, \quad -\frac{0.2 v_{\rm max}}{1} \le v_0(t) \le \frac{0.2 v_{\rm max}}{1}, \quad -\pi/6 \le \delta_0(t) \le \pi/6\]
- Control constraints:
\[-1 \le \dot{v}_0(t) \le 1, \quad -\pi/10 \le \dot{\delta}_0(t) \le \pi/10\]
- Path constraints:
\[-\pi/2 \le \beta_{01}(t), \beta_{12}(t) \le \pi/2\]
- Boundary conditions:
\[x_2(0) = x_{2,0}, \quad y_2(0) = y_{2,0}, \quad \theta_0(0) = \theta_{0,0}, \quad \theta_1(0) = \theta_{1,0}, \quad \theta_2(0) = \theta_{2,0}\]
\[x_2(t_f) = x_{2,f}, \quad y_2(t_f) = y_{2,f}, \quad \theta_2(t_f) = \theta_{2,f}, \quad \beta_{01}(t_f) = \theta_{0,f} - \theta_{1,f}, \quad \beta_{12}(t_f) = \theta_{1,f} - \theta_{2,f}\]
Dynamics
The truck-trailer kinematics are governed by
\[\begin{aligned} \dot{\theta}_0 &= \frac{v_0}{L_0} \tan\delta_0, \\ \dot{\theta}_1 &= \frac{v_0}{L_1} \sin\beta_{01} - \frac{M_0}{L_1} \cos\beta_{01} \, \dot{\theta}_0, \\ v_1 &= v_0 \cos\beta_{01} + M_0 \sin\beta_{01} \, \dot{\theta}_0, \\ \dot{\theta}_2 &= \frac{v_1}{L_2} \sin\beta_{12} - \frac{M_1}{L_2} \cos\beta_{12} \, \dot{\theta}_1, \\ v_2 &= v_1 \cos\beta_{12} + M_1 \sin\beta_{12} \, \dot{\theta}_1, \\ \dot{x}_2 &= v_2 \cos\theta_2, \quad \dot{y}_2 = v_2 \sin\theta_2, \\ \dot{v}_0 &= \dot{v}_0^{\rm control}, \quad \dot{\delta}_0 = \dot{\delta}_0^{\rm control} \end{aligned}\]
where $L_i$ and $M_i$ are the vehicle and trailer geometric parameters.
Objective
The goal is to minimize the final time while reducing large trailer articulation angles:
\[J = t_f + \int_0^{t_f} (\beta_{01}^2(t) + \beta_{12}^2(t)) \, dt \to \min\]
References
- Vanroye, L., Sathya, A., De Schutter, J., & Decré, W. (2023). FATROP: A Fast Constrained Optimal Control Problem Solver for Robot Trajectory Optimization and Control. arXiv preprint arXiv:2303.16746. Retrieved from https://arxiv.org/pdf/2303.16746
- Kretzschmar, H., & Burgard, W. (2019). Optimal motion planning for truck and trailer systems: A review. IEEE Transactions on Intelligent Vehicles, 4(3), 256–271.
- Falcone, P., Borrelli, F., Asgari, J., Tseng, H. E., & Hrovat, D. (2007). Predictive active steering control for autonomous vehicle systems. IEEE Transactions on Control Systems Technology, 15(3), 566–580.
Packages
Import all necessary packages and define DataFrames to store information about the problem and resolution results.
using OptimalControlProblems # to access the Beam model
using OptimalControl # to import the OptimalControl model
using NLPModelsIpopt # to solve the model with Ipopt
import DataFrames: DataFrame # to store data
using NLPModels # to retrieve data from the NLP solution
using Plots # to plot the trajectories
using Plots.PlotMeasures # for leftmargin, bottommargin
using JuMP # to import the JuMP model
using Ipopt # to solve the JuMP model with Ipopt
data_pb = DataFrame( # to store data about the problem
Problem=Symbol[],
Grid_Size=Int[],
Variables=Int[],
Constraints=Int[],
)
data_re = DataFrame( # to store data about the resolutions
Model=Symbol[],
Flag=Any[],
Iterations=Int[],
Objective=Float64[],
)
Initial guess
The initial guess (or first iterate) can be visualised by running the solver with max_iter=0
. Here is the initial guess.
Click to unfold and see the code for plotting the initial guess.
function plot_initial_guess(problem)
# dimensions
x_vars = metadata[problem][:state_name]
u_vars = metadata[problem][:control_name]
n = length(x_vars) # number of states
m = length(u_vars) # number of controls
# import OptimalControl model
docp = eval(problem)(OptimalControlBackend())
nlp_oc = nlp_model(docp)
# solve
nlp_oc_sol = NLPModelsIpopt.ipopt(nlp_oc; max_iter=0)
# build an optimal control solution
ocp_sol = build_ocp_solution(docp, nlp_oc_sol)
# plot the OptimalControl solution
plt = plot(
ocp_sol;
state_style=(color=1,),
costate_style=(color=1, legend=:none),
control_style=(color=1, legend=:none),
path_style=(color=1, legend=:none),
dual_style=(color=1, legend=:none),
size=(816, 220*(n+m)),
label="OptimalControl",
leftmargin=20mm,
)
for i in 2:n
plot!(plt[i]; legend=:none)
end
# import JuMP model
nlp_jp = eval(problem)(JuMPBackend())
# solve
set_optimizer(nlp_jp, Ipopt.Optimizer)
set_optimizer_attribute(nlp_jp, "max_iter", 0)
optimize!(nlp_jp)
# plot
t = time_grid(problem, nlp_jp) # t0, ..., tN = tf
x = state(problem, nlp_jp) # function of time
u = control(problem, nlp_jp) # function of time
p = costate(problem, nlp_jp) # function of time
for i in 1:n # state
label = i == 1 ? "JuMP" : :none
plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
end
for i in 1:n # costate
plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
end
for i in 1:m # control
plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
end
return plt
end
plot_initial_guess(:truck_trailer)
Solve the problem
OptimalControl model
Import the OptimalControl model and solve it.
# import DOCP model
docp = truck_trailer(OptimalControlBackend())
# get NLP model
nlp_oc = nlp_model(docp)
# solve
nlp_oc_sol = NLPModelsIpopt.ipopt(
nlp_oc;
print_level=4,
tol=1e-8,
mu_strategy="adaptive",
sb="yes",
)
Total number of variables............................: 1810
variables with only lower bounds: 0
variables with lower and upper bounds: 1207
variables with only upper bounds: 0
Total number of equality constraints.................: 1410
Total number of inequality constraints...............: 402
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 402
inequality constraints with only upper bounds: 0
In iteration 329, 6 Slacks too small, adjusting variable bounds
In iteration 330, 10 Slacks too small, adjusting variable bounds
Number of Iterations....: 331
(scaled) (unscaled)
Objective...............: 5.9230286957671595e+01 5.9230286957671595e+01
Dual infeasibility......: 5.5577428522454297e-07 5.5577428522454297e-07
Constraint violation....: 1.9960504360483355e-09 1.9960504360483355e-09
Variable bound violation: 1.5707963374467226e-08 1.5707963374467226e-08
Complementarity.........: 3.0356333426326606e-10 3.0356333426326606e-10
Overall NLP error.......: 1.9960504360483355e-09 5.5577428522454297e-07
Number of objective function evaluations = 383
Number of objective gradient evaluations = 331
Number of equality constraint evaluations = 383
Number of inequality constraint evaluations = 383
Number of equality constraint Jacobian evaluations = 333
Number of inequality constraint Jacobian evaluations = 333
Number of Lagrangian Hessian evaluations = 331
Total seconds in IPOPT = 5.623
EXIT: Optimal Solution Found.
The problem has the following numbers of steps, variables and constraints.
push!(data_pb,
(
Problem=:truck_trailer,
Grid_Size=metadata[:truck_trailer][:N],
Variables=get_nvar(nlp_oc),
Constraints=get_ncon(nlp_oc),
)
)
Row | Problem | Grid_Size | Variables | Constraints |
---|---|---|---|---|
Symbol | Int64 | Int64 | Int64 | |
1 | truck_trailer | 200 | 1810 | 1812 |
JuMP model
Import the JuMP model and solve it.
# import model
nlp_jp = truck_trailer(JuMPBackend())
# solve
set_optimizer(nlp_jp, Ipopt.Optimizer)
set_optimizer_attribute(nlp_jp, "print_level", 4)
set_optimizer_attribute(nlp_jp, "tol", 1e-8)
set_optimizer_attribute(nlp_jp, "mu_strategy", "adaptive")
set_optimizer_attribute(nlp_jp, "linear_solver", "mumps")
set_optimizer_attribute(nlp_jp, "sb", "yes")
optimize!(nlp_jp)
Total number of variables............................: 1810
variables with only lower bounds: 0
variables with lower and upper bounds: 1207
variables with only upper bounds: 0
Total number of equality constraints.................: 1410
Total number of inequality constraints...............: 402
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 402
inequality constraints with only upper bounds: 0
In iteration 382, 4 Slacks too small, adjusting variable bounds
In iteration 383, 4 Slacks too small, adjusting variable bounds
In iteration 384, 5 Slacks too small, adjusting variable bounds
In iteration 385, 5 Slacks too small, adjusting variable bounds
In iteration 386, 4 Slacks too small, adjusting variable bounds
In iteration 387, 2 Slacks too small, adjusting variable bounds
In iteration 388, 2 Slacks too small, adjusting variable bounds
In iteration 389, 2 Slacks too small, adjusting variable bounds
In iteration 418, 1 Slack too small, adjusting variable bound
In iteration 419, 8 Slacks too small, adjusting variable bounds
In iteration 420, 10 Slacks too small, adjusting variable bounds
Number of Iterations....: 421
(scaled) (unscaled)
Objective...............: 5.9230286794623986e+01 5.9230286794623986e+01
Dual infeasibility......: 6.8771546322856768e-07 6.8771546322856768e-07
Constraint violation....: 1.7621106795928654e-09 1.7621106795928654e-09
Variable bound violation: 1.5707974920786683e-08 1.5707974920786683e-08
Complementarity.........: 3.8811129932492257e-10 3.8811129932492257e-10
Overall NLP error.......: 2.1497851467150747e-09 6.8771546322856768e-07
Number of objective function evaluations = 451
Number of objective gradient evaluations = 421
Number of equality constraint evaluations = 451
Number of inequality constraint evaluations = 451
Number of equality constraint Jacobian evaluations = 423
Number of inequality constraint Jacobian evaluations = 423
Number of Lagrangian Hessian evaluations = 421
Total seconds in IPOPT = 51.644
EXIT: Optimal Solution Found.
Numerical comparisons
Let's get the flag, the number of iterations and the objective value from the resolutions.
# from OptimalControl model
push!(data_re,
(
Model=:OptimalControl,
Flag=nlp_oc_sol.status,
Iterations=nlp_oc_sol.iter,
Objective=nlp_oc_sol.objective,
)
)
# from JuMP model
push!(data_re,
(
Model=:JuMP,
Flag=termination_status(nlp_jp),
Iterations=barrier_iterations(nlp_jp),
Objective=objective_value(nlp_jp),
)
)
Row | Model | Flag | Iterations | Objective |
---|---|---|---|---|
Symbol | Any | Int64 | Float64 | |
1 | OptimalControl | first_order | 331 | 59.2303 |
2 | JuMP | LOCALLY_SOLVED | 421 | 59.2303 |
We compare the OptimalControl and JuMP solutions in terms of the number of iterations, the $L^2$-norm of the differences in the state, control, and variable, as well as the objective values. Both absolute and relative errors are reported.
Click to unfold and get the code of the numerical comparison.
function L2_norm(T, X)
# T and X are supposed to be one dimensional
s = 0.0
for i in 1:(length(T) - 1)
s += 0.5 * (X[i]^2 + X[i + 1]^2) * (T[i + 1]-T[i])
end
return √(s)
end
function numerical_comparison(problem, docp, nlp_oc_sol, nlp_jp)
# get relevant data from OptimalControl model
ocp_sol = build_ocp_solution(docp, nlp_oc_sol) # build an ocp solution
t_oc = time_grid(ocp_sol)
x_oc = state(ocp_sol).(t_oc)
u_oc = control(ocp_sol).(t_oc)
v_oc = variable(ocp_sol)
o_oc = objective(ocp_sol)
i_oc = iterations(ocp_sol)
# get relevant data from JuMP model
t_jp = time_grid(problem, nlp_jp)
x_jp = state(problem, nlp_jp).(t_jp)
u_jp = control(problem, nlp_jp).(t_jp)
o_jp = objective(problem, nlp_jp)
v_jp = variable(problem, nlp_jp)
i_jp = iterations(problem, nlp_jp)
x_vars = metadata[problem][:state_name]
u_vars = metadata[problem][:control_name]
v_vars = metadata[problem][:variable_name]
println("┌─ ", string(problem))
println("│")
# number of iterations
println("├─ Number of iterations")
println("│")
println("│ OptimalControl : ", i_oc)
println("│ JuMP : ", i_jp)
println("│")
# state
for i in eachindex(x_vars)
xi_oc = [x_oc[k][i] for k in eachindex(t_oc)]
xi_jp = [x_jp[k][i] for k in eachindex(t_jp)]
L2_oc = L2_norm(t_oc, xi_oc)
L2_jp = L2_norm(t_oc, xi_jp)
L2_ae = L2_norm(t_oc, xi_oc-xi_jp)
L2_re = L2_ae/(0.5*(L2_oc + L2_jp))
println("├─ State $(x_vars[i]) (L2 norm)")
println("│")
#println("│ OptimalControl : ", L2_oc)
#println("│ JuMP : ", L2_jp)
println("│ Absolute error : ", L2_ae)
println("│ Relative error : ", L2_re)
println("│")
end
# control
for i in eachindex(u_vars)
ui_oc = [u_oc[k][i] for k in eachindex(t_oc)]
ui_jp = [u_jp[k][i] for k in eachindex(t_jp)]
L2_oc = L2_norm(t_oc, ui_oc)
L2_jp = L2_norm(t_oc, ui_jp)
L2_ae = L2_norm(t_oc, ui_oc-ui_jp)
L2_re = L2_ae/(0.5*(L2_oc + L2_jp))
println("├─ Control $(u_vars[i]) (L2 norm)")
println("│")
#println("│ OptimalControl : ", L2_oc)
#println("│ JuMP : ", L2_jp)
println("│ Absolute error : ", L2_ae)
println("│ Relative error : ", L2_re)
println("│")
end
# variable
if !isnothing(v_vars)
for i in eachindex(v_vars)
vi_oc = v_oc[i]
vi_jp = v_jp[i]
vi_ae = abs(vi_oc-vi_jp)
vi_re = vi_ae/(0.5*(abs(vi_oc) + abs(vi_jp)))
println("├─ Variable $(v_vars[i])")
println("│")
#println("│ OptimalControl : ", vi_oc)
#println("│ JuMP : ", vi_jp)
println("│ Absolute error : ", vi_ae)
println("│ Relative error : ", vi_re)
println("│")
end
end
# objective
o_ae = abs(o_oc-o_jp)
o_re = o_ae/(0.5*(abs(o_oc) + abs(o_jp)))
println("├─ objective")
println("│")
#println("│ OptimalControl : ", o_oc)
#println("│ JuMP : ", o_jp)
println("│ Absolute error : ", o_ae)
println("│ Relative error : ", o_re)
println("│")
println("└─")
return nothing
end
numerical_comparison(:truck_trailer, docp, nlp_oc_sol, nlp_jp)
┌─ truck_trailer
│
├─ Number of iterations
│
│ OptimalControl : 331
│ JuMP : 421
│
├─ State x2 (L2 norm)
│
│ Absolute error : 5.984788178653808e-8
│ Relative error : 9.800114491656519e-9
│
├─ State y2 (L2 norm)
│
│ Absolute error : 9.424374924133926e-8
│ Relative error : 1.8095801847685922e-8
│
├─ State θ0 (L2 norm)
│
│ Absolute error : 1.5041078182082103e-6
│ Relative error : 1.901878325859842e-7
│
├─ State θ1 (L2 norm)
│
│ Absolute error : 1.6789458656186566e-7
│ Relative error : 2.2660840666362675e-8
│
├─ State θ2 (L2 norm)
│
│ Absolute error : 8.54317822615001e-8
│ Relative error : 1.1893104969028568e-8
│
├─ State v0 (L2 norm)
│
│ Absolute error : 4.011248329505445e-8
│ Relative error : 2.876178015898025e-8
│
├─ State δ0 (L2 norm)
│
│ Absolute error : 3.679031822150504e-5
│ Relative error : 1.824696462379674e-5
│
├─ Control dv0 (L2 norm)
│
│ Absolute error : 2.4463842053072597e-6
│ Relative error : 5.322458500410078e-7
│
├─ Control dδ0 (L2 norm)
│
│ Absolute error : 0.0016144921180696054
│ Relative error : 0.000869861286717324
│
├─ Variable tf
│
│ Absolute error : 2.0582197635121702e-7
│ Relative error : 4.184758343865891e-9
│
├─ objective
│
│ Absolute error : 1.6304760919183536e-7
│ Relative error : 2.7527742611271247e-9
│
└─
Plot the solutions
Visualise states, costates, and controls from the OptimalControl and JuMP solutions:
# build an ocp solution to use the plot from OptimalControl package
ocp_sol = build_ocp_solution(docp, nlp_oc_sol)
# dimensions
n = state_dimension(ocp_sol) # or length(metadata[:truck_trailer][:state_name])
m = control_dimension(ocp_sol) # or length(metadata[:truck_trailer][:control_name])
# from OptimalControl solution
plt = plot(
ocp_sol;
state_style=(color=1,),
costate_style=(color=1, legend=:none),
control_style=(color=1, legend=:none),
path_style=(color=1, legend=:none),
dual_style=(color=1, legend=:none),
size=(816, 240*(n+m)),
label="OptimalControl",
leftmargin=20mm,
)
for i in 2:n
plot!(plt[i]; legend=:none)
end
# from JuMP solution
t = time_grid(:truck_trailer, nlp_jp) # t0, ..., tN = tf
x = state(:truck_trailer, nlp_jp) # function of time
u = control(:truck_trailer, nlp_jp) # function of time
p = costate(:truck_trailer, nlp_jp) # function of time
for i in 1:n # state
label = i == 1 ? "JuMP" : :none
plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
end
for i in 1:n # costate
plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
end
for i in 1:m # control
plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
end