Cart pendulum
This problem involves swinging up a pendulum mounted on a cart, a classical underactuated system. The goal is to move the pendulum from its downward equilibrium to the upright position while controlling the horizontal motion of the cart, in minimum time.
System Dynamics
The system has four states and one control:
\[x\]
: cart position\[v\]
: cart velocity\[\theta\]
: pendulum angle from downward vertical\[\omega\]
: pendulum angular velocity\[F_{\rm ex}\]
: horizontal force applied to the cart (control)
The dynamics are expressed as
\[\dot{x} = v\]
\[\dot{v} = -\frac{1}{J} \, c\]
\[\dot{\theta} = \omega\]
\[\dot{\omega} = \alpha(\dot{v})\]
where
\[\alpha(ddx) = \frac{0.5 \, L \, m}{I + 0.25 \, m L^2} \big(-ddx \cos\theta - g \sin\theta\big)\]
\[\text{ddCOG} = L \, \omega \, [-\sin\theta, \cos\theta] + \frac{L}{2} \,[\cos\theta, \sin\theta] \, \alpha(ddx) + [ddx,0]\]
\[\text{FXFY} = m \, \text{ddCOG} + [0, m g]\]
\[c = -\text{FXFY}_x + F_{\rm ex} - m_{\rm cart} ddx - J ddx\]
Here, $J$ represents the effective mass of the cart, $m$ and $m_{\rm cart}$ are the pendulum and cart masses, $L$ is the pendulum length, and $I$ its moment of inertia. The variable $ddx$ is an auxiliary variable related to the cart acceleration used for the dynamics formulation.
Boundary Conditions
- Initial conditions:
\[x(0) = 0, \quad \theta(0) = 0, \quad \omega(0) = 0\]
- Final conditions:
\[\theta(T) = \pi, \quad \omega(T) = 0\]
- Cart position and velocity constraints:
\[|x(t)| \le 1, \quad |v(t)| \le 2\]
- Control limits:
\[|F_{\rm ex}(t)| \le 5\]
- Time horizon:
\[T \ge 0.1\]
Objective
The goal is to minimize the final time $T$:
\[J = T \to \min\]
subject to the dynamics, boundary conditions, and state/control constraints.
References
- Vanroye, L., Sathya, A., De Schutter, J., & Decré, W. (2023). FATROP: A Fast Constrained Optimal Control Problem Solver for Robot Trajectory Optimization and Control. arXiv preprint arXiv:2303.16746. Retrieved from https://arxiv.org/pdf/2303.16746
- Åström, K. J., & Furuta, K. (2000). Swinging up a pendulum by energy control. Automatica, 36(2), 287–295.
- Lipp, T., & Boyd, S. (2014). Variations and extensions of the cart-pole swing-up problem. Stanford University Technical Report.
Packages
Import all necessary packages and define DataFrames to store information about the problem and resolution results.
using OptimalControlProblems # to access the Beam model
using OptimalControl # to import the OptimalControl model
using NLPModelsIpopt # to solve the model with Ipopt
import DataFrames: DataFrame # to store data
using NLPModels # to retrieve data from the NLP solution
using Plots # to plot the trajectories
using Plots.PlotMeasures # for leftmargin, bottommargin
using JuMP # to import the JuMP model
using Ipopt # to solve the JuMP model with Ipopt
data_pb = DataFrame( # to store data about the problem
Problem=Symbol[],
Grid_Size=Int[],
Variables=Int[],
Constraints=Int[],
)
data_re = DataFrame( # to store data about the resolutions
Model=Symbol[],
Flag=Any[],
Iterations=Int[],
Objective=Float64[],
)
Initial guess
The initial guess (or first iterate) can be visualised by running the solver with max_iter=0
. Here is the initial guess.
Click to unfold and see the code for plotting the initial guess.
function plot_initial_guess(problem)
# dimensions
x_vars = metadata[problem][:state_name]
u_vars = metadata[problem][:control_name]
n = length(x_vars) # number of states
m = length(u_vars) # number of controls
# import OptimalControl model
docp = eval(problem)(OptimalControlBackend())
nlp_oc = nlp_model(docp)
# solve
nlp_oc_sol = NLPModelsIpopt.ipopt(nlp_oc; max_iter=0)
# build an optimal control solution
ocp_sol = build_ocp_solution(docp, nlp_oc_sol)
# plot the OptimalControl solution
plt = plot(
ocp_sol;
state_style=(color=1,),
costate_style=(color=1, legend=:none),
control_style=(color=1, legend=:none),
path_style=(color=1, legend=:none),
dual_style=(color=1, legend=:none),
size=(816, 220*(n+m)),
label="OptimalControl",
leftmargin=20mm,
)
for i in 2:n
plot!(plt[i]; legend=:none)
end
# import JuMP model
nlp_jp = eval(problem)(JuMPBackend())
# solve
set_optimizer(nlp_jp, Ipopt.Optimizer)
set_optimizer_attribute(nlp_jp, "max_iter", 0)
optimize!(nlp_jp)
# plot
t = time_grid(problem, nlp_jp) # t0, ..., tN = tf
x = state(problem, nlp_jp) # function of time
u = control(problem, nlp_jp) # function of time
p = costate(problem, nlp_jp) # function of time
for i in 1:n # state
label = i == 1 ? "JuMP" : :none
plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
end
for i in 1:n # costate
plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
end
for i in 1:m # control
plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
end
return plt
end
plot_initial_guess(:cart_pendulum)
Solve the problem
OptimalControl model
Import the OptimalControl model and solve it.
# import DOCP model
docp = cart_pendulum(OptimalControlBackend())
# get NLP model
nlp_oc = nlp_model(docp)
# solve
nlp_oc_sol = NLPModelsIpopt.ipopt(
nlp_oc;
print_level=4,
tol=1e-8,
mu_strategy="adaptive",
sb="yes",
)
Total number of variables............................: 2507
variables with only lower bounds: 1
variables with lower and upper bounds: 1503
variables with only upper bounds: 0
Total number of equality constraints.................: 2005
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
Number of Iterations....: 386
(scaled) (unscaled)
Objective...............: 1.7439655750261349e+00 1.7439655750261349e+00
Dual infeasibility......: 3.7154039003381434e-10 3.7154039003381434e-10
Constraint violation....: 2.1820550921702875e-10 2.1820550921702875e-10
Variable bound violation: 3.8430698623415083e-08 3.8430698623415083e-08
Complementarity.........: 3.7504119987994165e-11 3.7504119987994165e-11
Overall NLP error.......: 3.7154039003381434e-10 3.7154039003381434e-10
Number of objective function evaluations = 421
Number of objective gradient evaluations = 359
Number of equality constraint evaluations = 421
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 390
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 386
Total seconds in IPOPT = 7.477
EXIT: Optimal Solution Found.
The problem has the following numbers of steps, variables and constraints.
push!(data_pb,
(
Problem=:cart_pendulum,
Grid_Size=metadata[:cart_pendulum][:N],
Variables=get_nvar(nlp_oc),
Constraints=get_ncon(nlp_oc),
)
)
Row | Problem | Grid_Size | Variables | Constraints |
---|---|---|---|---|
Symbol | Int64 | Int64 | Int64 | |
1 | cart_pendulum | 500 | 2507 | 2005 |
JuMP model
Import the JuMP model and solve it.
# import model
nlp_jp = cart_pendulum(JuMPBackend())
# solve
set_optimizer(nlp_jp, Ipopt.Optimizer)
set_optimizer_attribute(nlp_jp, "print_level", 4)
set_optimizer_attribute(nlp_jp, "tol", 1e-8)
set_optimizer_attribute(nlp_jp, "mu_strategy", "adaptive")
set_optimizer_attribute(nlp_jp, "linear_solver", "mumps")
set_optimizer_attribute(nlp_jp, "sb", "yes")
optimize!(nlp_jp)
Total number of variables............................: 2507
variables with only lower bounds: 1
variables with lower and upper bounds: 1503
variables with only upper bounds: 0
Total number of equality constraints.................: 2005
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
Number of Iterations....: 290
(scaled) (unscaled)
Objective...............: 1.7439655750387701e+00 1.7439655750387701e+00
Dual infeasibility......: 2.5948068086562026e-10 2.5948068086562026e-10
Constraint violation....: 1.6042195349896815e-10 1.6042195349896815e-10
Variable bound violation: 3.8430657767207776e-08 3.8430657767207776e-08
Complementarity.........: 2.9764515309179606e-11 2.9764515309179606e-11
Overall NLP error.......: 2.5948068086562026e-10 2.5948068086562026e-10
Number of objective function evaluations = 333
Number of objective gradient evaluations = 245
Number of equality constraint evaluations = 333
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 295
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 290
Total seconds in IPOPT = 5.066
EXIT: Optimal Solution Found.
Numerical comparisons
Let's get the flag, the number of iterations and the objective value from the resolutions.
# from OptimalControl model
push!(data_re,
(
Model=:OptimalControl,
Flag=nlp_oc_sol.status,
Iterations=nlp_oc_sol.iter,
Objective=nlp_oc_sol.objective,
)
)
# from JuMP model
push!(data_re,
(
Model=:JuMP,
Flag=termination_status(nlp_jp),
Iterations=barrier_iterations(nlp_jp),
Objective=objective_value(nlp_jp),
)
)
Row | Model | Flag | Iterations | Objective |
---|---|---|---|---|
Symbol | Any | Int64 | Float64 | |
1 | OptimalControl | first_order | 386 | 1.74397 |
2 | JuMP | LOCALLY_SOLVED | 290 | 1.74397 |
We compare the OptimalControl and JuMP solutions in terms of the number of iterations, the $L^2$-norm of the differences in the state, control, and variable, as well as the objective values. Both absolute and relative errors are reported.
Click to unfold and get the code of the numerical comparison.
function L2_norm(T, X)
# T and X are supposed to be one dimensional
s = 0.0
for i in 1:(length(T) - 1)
s += 0.5 * (X[i]^2 + X[i + 1]^2) * (T[i + 1]-T[i])
end
return √(s)
end
function numerical_comparison(problem, docp, nlp_oc_sol, nlp_jp)
# get relevant data from OptimalControl model
ocp_sol = build_ocp_solution(docp, nlp_oc_sol) # build an ocp solution
t_oc = time_grid(ocp_sol)
x_oc = state(ocp_sol).(t_oc)
u_oc = control(ocp_sol).(t_oc)
v_oc = variable(ocp_sol)
o_oc = objective(ocp_sol)
i_oc = iterations(ocp_sol)
# get relevant data from JuMP model
t_jp = time_grid(problem, nlp_jp)
x_jp = state(problem, nlp_jp).(t_jp)
u_jp = control(problem, nlp_jp).(t_jp)
o_jp = objective(problem, nlp_jp)
v_jp = variable(problem, nlp_jp)
i_jp = iterations(problem, nlp_jp)
x_vars = metadata[problem][:state_name]
u_vars = metadata[problem][:control_name]
v_vars = metadata[problem][:variable_name]
println("┌─ ", string(problem))
println("│")
# number of iterations
println("├─ Number of iterations")
println("│")
println("│ OptimalControl : ", i_oc)
println("│ JuMP : ", i_jp)
println("│")
# state
for i in eachindex(x_vars)
xi_oc = [x_oc[k][i] for k in eachindex(t_oc)]
xi_jp = [x_jp[k][i] for k in eachindex(t_jp)]
L2_oc = L2_norm(t_oc, xi_oc)
L2_jp = L2_norm(t_oc, xi_jp)
L2_ae = L2_norm(t_oc, xi_oc-xi_jp)
L2_re = L2_ae/(0.5*(L2_oc + L2_jp))
println("├─ State $(x_vars[i]) (L2 norm)")
println("│")
#println("│ OptimalControl : ", L2_oc)
#println("│ JuMP : ", L2_jp)
println("│ Absolute error : ", L2_ae)
println("│ Relative error : ", L2_re)
println("│")
end
# control
for i in eachindex(u_vars)
ui_oc = [u_oc[k][i] for k in eachindex(t_oc)]
ui_jp = [u_jp[k][i] for k in eachindex(t_jp)]
L2_oc = L2_norm(t_oc, ui_oc)
L2_jp = L2_norm(t_oc, ui_jp)
L2_ae = L2_norm(t_oc, ui_oc-ui_jp)
L2_re = L2_ae/(0.5*(L2_oc + L2_jp))
println("├─ Control $(u_vars[i]) (L2 norm)")
println("│")
#println("│ OptimalControl : ", L2_oc)
#println("│ JuMP : ", L2_jp)
println("│ Absolute error : ", L2_ae)
println("│ Relative error : ", L2_re)
println("│")
end
# variable
if !isnothing(v_vars)
for i in eachindex(v_vars)
vi_oc = v_oc[i]
vi_jp = v_jp[i]
vi_ae = abs(vi_oc-vi_jp)
vi_re = vi_ae/(0.5*(abs(vi_oc) + abs(vi_jp)))
println("├─ Variable $(v_vars[i])")
println("│")
#println("│ OptimalControl : ", vi_oc)
#println("│ JuMP : ", vi_jp)
println("│ Absolute error : ", vi_ae)
println("│ Relative error : ", vi_re)
println("│")
end
end
# objective
o_ae = abs(o_oc-o_jp)
o_re = o_ae/(0.5*(abs(o_oc) + abs(o_jp)))
println("├─ objective")
println("│")
#println("│ OptimalControl : ", o_oc)
#println("│ JuMP : ", o_jp)
println("│ Absolute error : ", o_ae)
println("│ Relative error : ", o_re)
println("│")
println("└─")
return nothing
end
numerical_comparison(:cart_pendulum, docp, nlp_oc_sol, nlp_jp)
┌─ cart_pendulum
│
├─ Number of iterations
│
│ OptimalControl : 386
│ JuMP : 290
│
├─ State x (L2 norm)
│
│ Absolute error : 2.5919422876738248e-8
│ Relative error : 3.280850793366343e-8
│
├─ State v (L2 norm)
│
│ Absolute error : 1.7039581836315716e-6
│ Relative error : 1.0465303459460474e-6
│
├─ State θ (L2 norm)
│
│ Absolute error : 2.3954091071462237e-8
│ Relative error : 1.1694602299298485e-8
│
├─ State ω (L2 norm)
│
│ Absolute error : 1.3652314337009033e-6
│ Relative error : 3.007062455529096e-7
│
├─ Control Fex (L2 norm)
│
│ Absolute error : 0.003989596985046297
│ Relative error : 0.0006167265531643969
│
├─ Variable tf
│
│ Absolute error : 1.2635226198653982e-11
│ Relative error : 7.245112162502898e-12
│
├─ Variable ddx
│
│ Absolute error : 2.3069118688587298e-7
│ Relative error : 8.411350785863157e-6
│
├─ objective
│
│ Absolute error : 1.2635226198653982e-11
│ Relative error : 7.245112162502898e-12
│
└─
Plot the solutions
Visualise states, costates, and controls from the OptimalControl and JuMP solutions:
# build an ocp solution to use the plot from OptimalControl package
ocp_sol = build_ocp_solution(docp, nlp_oc_sol)
# dimensions
n = state_dimension(ocp_sol) # or length(metadata[:cart_pendulum][:state_name])
m = control_dimension(ocp_sol) # or length(metadata[:cart_pendulum][:control_name])
# from OptimalControl solution
plt = plot(
ocp_sol;
state_style=(color=1,),
costate_style=(color=1, legend=:none),
control_style=(color=1, legend=:none),
path_style=(color=1, legend=:none),
dual_style=(color=1, legend=:none),
size=(816, 240*(n+m)),
label="OptimalControl",
leftmargin=20mm,
)
for i in 2:n
plot!(plt[i]; legend=:none)
end
# from JuMP solution
t = time_grid(:cart_pendulum, nlp_jp) # t0, ..., tN = tf
x = state(:cart_pendulum, nlp_jp) # function of time
u = control(:cart_pendulum, nlp_jp) # function of time
p = costate(:cart_pendulum, nlp_jp) # function of time
for i in 1:n # state
label = i == 1 ? "JuMP" : :none
plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
end
for i in 1:n # costate
plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
end
for i in 1:m # control
plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
end