Bioreactor
This problem models a coupled photobioreactor–digester system for methane production. The system consists of three state variables: the algae concentration $y(t)$, the substrate concentration $s(t)$, and the biomass concentration $b(t)$. The control variable $u(t)$ represents the input flow rate between the two units. The dynamics include algal growth driven by light, substrate consumption, and biomass evolution. The aim is to maximise methane production over a fixed time horizon under biological and operational constraints.
Problem formulation
We minimise
\[\min_{y,\,s,\,b,\,u} J(y,s,b,u) = - \frac{1}{\beta+c} \int_0^T \mu_2(s(t))\, b(t)\, dt,\]
subject to the dynamics
\[\dot{y}(t) = \frac{\mu(t)\, y(t)}{1+y(t)} - (r+u(t))\, y(t),\]
\[\dot{s}(t) = -\mu_2(s(t))\, b(t) + u(t)\, \beta\big(\gamma y(t) - s(t)\big),\]
\[\dot{b}(t) = \big(\mu_2(s(t)) - u(t)\, \beta\big)\, b(t),\]
with
- Light model: $\mu(t) = \mu_{\text{bar}} \,\max(0,\sin(\tau(t)))^2$, where $\tau(t)$ encodes a periodic day–night cycle,
- Growth function (Monod law): $\mu_2(s) = \mu_2^m \,\dfrac{s}{K_s + s}$.
Constraints
- Control bounds: $0 \leq u(t) \leq 1$,
- State bounds: $y(t) \geq 0,\; s(t) \geq 0,\; b(t) \geq 10^{-3}$,
- Initial conditions: $0.05 \leq y(0) \leq 0.25$, $0.5 \leq s(0) \leq 5$, $0.5 \leq b(0) \leq 3$.
The horizon is fixed to $T = 200$ (rescaled units), corresponding to several day–night periods.
Qualitative behaviour
The optimal solution exploits the periodic structure of the problem: during illuminated phases, algal growth is favoured, while in dark phases methane production becomes predominant. The control exhibits a near bang–bang structure, alternating between minimal and maximal input flows, with possible singular arcs when substrate and biomass reach balanced levels. The constraints on positivity of the states are typically active for $b(t)$ at the beginning of the process.
References
- Bayen, T., Mairet, F., Martinon, P., & Sebbah, M. (2014). Analysis of a periodic optimal control problem connected to microalgae anaerobic digestion. Optimal Control Applications and Methods. DOI:10.1002/oca.2127
- Bayen, T., Mairet, F., Martinon, P., & Sebbah, M. (2013). Optimising the anaerobic digestion of microalgae in a coupled process. 13th European Control Conference.
- Barbosa, M.J., & Wijffels, R.H. (2010). An Outlook on Microalgal Biofuels. Science, 329, 796–799.
- Betts, J.T. (2001). Practical methods for optimal control using nonlinear programming. SIAM.
- BOCOP repository: https://github.com/control-toolbox/bocop/tree/main/bocop
Packages
Import all necessary packages and define DataFrames to store information about the problem and resolution results.
using OptimalControlProblems # to access the Beam model
using OptimalControl # to import the OptimalControl model
using NLPModelsIpopt # to solve the model with Ipopt
import DataFrames: DataFrame # to store data
using NLPModels # to retrieve data from the NLP solution
using Plots # to plot the trajectories
using Plots.PlotMeasures # for leftmargin, bottommargin
using JuMP # to import the JuMP model
using Ipopt # to solve the JuMP model with Ipopt
data_pb = DataFrame( # to store data about the problem
Problem=Symbol[],
Grid_Size=Int[],
Variables=Int[],
Constraints=Int[],
)
data_re = DataFrame( # to store data about the resolutions
Model=Symbol[],
Flag=Any[],
Iterations=Int[],
Objective=Float64[],
)
Initial guess
The initial guess (or first iterate) can be visualised by running the solver with max_iter=0
. Here is the initial guess.
Click to unfold and see the code for plotting the initial guess.
function plot_initial_guess(problem)
# dimensions
x_vars = metadata[problem][:state_name]
u_vars = metadata[problem][:control_name]
n = length(x_vars) # number of states
m = length(u_vars) # number of controls
# import OptimalControl model
docp = eval(problem)(OptimalControlBackend())
nlp_oc = nlp_model(docp)
# solve
nlp_oc_sol = NLPModelsIpopt.ipopt(nlp_oc; max_iter=0)
# build an optimal control solution
ocp_sol = build_ocp_solution(docp, nlp_oc_sol)
# plot the OptimalControl solution
plt = plot(
ocp_sol;
state_style=(color=1,),
costate_style=(color=1, legend=:none),
control_style=(color=1, legend=:none),
path_style=(color=1, legend=:none),
dual_style=(color=1, legend=:none),
size=(816, 220*(n+m)),
label="OptimalControl",
leftmargin=20mm,
)
for i in 2:n
plot!(plt[i]; legend=:none)
end
# import JuMP model
nlp_jp = eval(problem)(JuMPBackend())
# solve
set_optimizer(nlp_jp, Ipopt.Optimizer)
set_optimizer_attribute(nlp_jp, "max_iter", 0)
optimize!(nlp_jp)
# plot
t = time_grid(problem, nlp_jp) # t0, ..., tN = tf
x = state(problem, nlp_jp) # function of time
u = control(problem, nlp_jp) # function of time
p = costate(problem, nlp_jp) # function of time
for i in 1:n # state
label = i == 1 ? "JuMP" : :none
plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
end
for i in 1:n # costate
plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
end
for i in 1:m # control
plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
end
return plt
end
plot_initial_guess(:bioreactor)
Solve the problem
OptimalControl model
Import the OptimalControl model and solve it.
# import DOCP model
docp = bioreactor(OptimalControlBackend())
# get NLP model
nlp_oc = nlp_model(docp)
# solve
nlp_oc_sol = NLPModelsIpopt.ipopt(
nlp_oc;
print_level=4,
tol=1e-8,
mu_strategy="adaptive",
sb="yes",
)
Total number of variables............................: 2404
variables with only lower bounds: 1803
variables with lower and upper bounds: 601
variables with only upper bounds: 0
Total number of equality constraints.................: 1800
Total number of inequality constraints...............: 3
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 3
inequality constraints with only upper bounds: 0
Number of Iterations....: 169
(scaled) (unscaled)
Objective...............: -1.2925452053485811e+01 -1.2925452053485811e+01
Dual infeasibility......: 1.7430226191149280e-09 1.7430226191149280e-09
Constraint violation....: 2.7871038810189930e-11 2.7871038810189930e-11
Variable bound violation: 9.9794036661269432e-09 9.9794036661269432e-09
Complementarity.........: 5.6482249599314883e-11 5.6482249599314883e-11
Overall NLP error.......: 1.7430226191149280e-09 1.7430226191149280e-09
Number of objective function evaluations = 523
Number of objective gradient evaluations = 170
Number of equality constraint evaluations = 523
Number of inequality constraint evaluations = 523
Number of equality constraint Jacobian evaluations = 170
Number of inequality constraint Jacobian evaluations = 170
Number of Lagrangian Hessian evaluations = 169
Total seconds in IPOPT = 2.846
EXIT: Optimal Solution Found.
The problem has the following numbers of steps, variables and constraints.
push!(data_pb,
(
Problem=:bioreactor,
Grid_Size=metadata[:bioreactor][:N],
Variables=get_nvar(nlp_oc),
Constraints=get_ncon(nlp_oc),
)
)
Row | Problem | Grid_Size | Variables | Constraints |
---|---|---|---|---|
Symbol | Int64 | Int64 | Int64 | |
1 | bioreactor | 600 | 2404 | 1803 |
JuMP model
Import the JuMP model and solve it.
# import model
nlp_jp = bioreactor(JuMPBackend())
# solve
set_optimizer(nlp_jp, Ipopt.Optimizer)
set_optimizer_attribute(nlp_jp, "print_level", 4)
set_optimizer_attribute(nlp_jp, "tol", 1e-8)
set_optimizer_attribute(nlp_jp, "mu_strategy", "adaptive")
set_optimizer_attribute(nlp_jp, "linear_solver", "mumps")
set_optimizer_attribute(nlp_jp, "sb", "yes")
optimize!(nlp_jp)
Total number of variables............................: 2404
variables with only lower bounds: 1803
variables with lower and upper bounds: 601
variables with only upper bounds: 0
Total number of equality constraints.................: 1800
Total number of inequality constraints...............: 3
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 3
inequality constraints with only upper bounds: 0
Number of Iterations....: 199
(scaled) (unscaled)
Objective...............: -1.2925452054139990e+01 -1.2925452054139990e+01
Dual infeasibility......: 2.1331552219061578e-09 2.1331552219061578e-09
Constraint violation....: 3.3919533848347783e-12 3.3919533848347783e-12
Variable bound violation: 9.9843364557546566e-09 9.9843364557546566e-09
Complementarity.........: 2.3792290663209013e-11 2.3792290663209013e-11
Overall NLP error.......: 2.1331552219061578e-09 2.1331552219061578e-09
Number of objective function evaluations = 739
Number of objective gradient evaluations = 200
Number of equality constraint evaluations = 739
Number of inequality constraint evaluations = 739
Number of equality constraint Jacobian evaluations = 200
Number of inequality constraint Jacobian evaluations = 200
Number of Lagrangian Hessian evaluations = 199
Total seconds in IPOPT = 5.759
EXIT: Optimal Solution Found.
Numerical comparisons
Let's get the flag, the number of iterations and the objective value from the resolutions.
# from OptimalControl model
push!(data_re,
(
Model=:OptimalControl,
Flag=nlp_oc_sol.status,
Iterations=nlp_oc_sol.iter,
Objective=nlp_oc_sol.objective,
)
)
# from JuMP model
push!(data_re,
(
Model=:JuMP,
Flag=termination_status(nlp_jp),
Iterations=barrier_iterations(nlp_jp),
Objective=objective_value(nlp_jp),
)
)
Row | Model | Flag | Iterations | Objective |
---|---|---|---|---|
Symbol | Any | Int64 | Float64 | |
1 | OptimalControl | first_order | 169 | -12.9255 |
2 | JuMP | LOCALLY_SOLVED | 199 | -12.9255 |
We compare the OptimalControl and JuMP solutions in terms of the number of iterations, the $L^2$-norm of the differences in the state, control, and variable, as well as the objective values. Both absolute and relative errors are reported.
Click to unfold and get the code of the numerical comparison.
function L2_norm(T, X)
# T and X are supposed to be one dimensional
s = 0.0
for i in 1:(length(T) - 1)
s += 0.5 * (X[i]^2 + X[i + 1]^2) * (T[i + 1]-T[i])
end
return √(s)
end
function numerical_comparison(problem, docp, nlp_oc_sol, nlp_jp)
# get relevant data from OptimalControl model
ocp_sol = build_ocp_solution(docp, nlp_oc_sol) # build an ocp solution
t_oc = time_grid(ocp_sol)
x_oc = state(ocp_sol).(t_oc)
u_oc = control(ocp_sol).(t_oc)
v_oc = variable(ocp_sol)
o_oc = objective(ocp_sol)
i_oc = iterations(ocp_sol)
# get relevant data from JuMP model
t_jp = time_grid(problem, nlp_jp)
x_jp = state(problem, nlp_jp).(t_jp)
u_jp = control(problem, nlp_jp).(t_jp)
o_jp = objective(problem, nlp_jp)
v_jp = variable(problem, nlp_jp)
i_jp = iterations(problem, nlp_jp)
x_vars = metadata[problem][:state_name]
u_vars = metadata[problem][:control_name]
v_vars = metadata[problem][:variable_name]
println("┌─ ", string(problem))
println("│")
# number of iterations
println("├─ Number of iterations")
println("│")
println("│ OptimalControl : ", i_oc)
println("│ JuMP : ", i_jp)
println("│")
# state
for i in eachindex(x_vars)
xi_oc = [x_oc[k][i] for k in eachindex(t_oc)]
xi_jp = [x_jp[k][i] for k in eachindex(t_jp)]
L2_oc = L2_norm(t_oc, xi_oc)
L2_jp = L2_norm(t_oc, xi_jp)
L2_ae = L2_norm(t_oc, xi_oc-xi_jp)
L2_re = L2_ae/(0.5*(L2_oc + L2_jp))
println("├─ State $(x_vars[i]) (L2 norm)")
println("│")
#println("│ OptimalControl : ", L2_oc)
#println("│ JuMP : ", L2_jp)
println("│ Absolute error : ", L2_ae)
println("│ Relative error : ", L2_re)
println("│")
end
# control
for i in eachindex(u_vars)
ui_oc = [u_oc[k][i] for k in eachindex(t_oc)]
ui_jp = [u_jp[k][i] for k in eachindex(t_jp)]
L2_oc = L2_norm(t_oc, ui_oc)
L2_jp = L2_norm(t_oc, ui_jp)
L2_ae = L2_norm(t_oc, ui_oc-ui_jp)
L2_re = L2_ae/(0.5*(L2_oc + L2_jp))
println("├─ Control $(u_vars[i]) (L2 norm)")
println("│")
#println("│ OptimalControl : ", L2_oc)
#println("│ JuMP : ", L2_jp)
println("│ Absolute error : ", L2_ae)
println("│ Relative error : ", L2_re)
println("│")
end
# variable
if !isnothing(v_vars)
for i in eachindex(v_vars)
vi_oc = v_oc[i]
vi_jp = v_jp[i]
vi_ae = abs(vi_oc-vi_jp)
vi_re = vi_ae/(0.5*(abs(vi_oc) + abs(vi_jp)))
println("├─ Variable $(v_vars[i])")
println("│")
#println("│ OptimalControl : ", vi_oc)
#println("│ JuMP : ", vi_jp)
println("│ Absolute error : ", vi_ae)
println("│ Relative error : ", vi_re)
println("│")
end
end
# objective
o_ae = abs(o_oc-o_jp)
o_re = o_ae/(0.5*(abs(o_oc) + abs(o_jp)))
println("├─ objective")
println("│")
#println("│ OptimalControl : ", o_oc)
#println("│ JuMP : ", o_jp)
println("│ Absolute error : ", o_ae)
println("│ Relative error : ", o_re)
println("│")
println("└─")
return nothing
end
numerical_comparison(:bioreactor, docp, nlp_oc_sol, nlp_jp)
┌─ bioreactor
│
├─ Number of iterations
│
│ OptimalControl : 169
│ JuMP : 199
│
├─ State y (L2 norm)
│
│ Absolute error : 5.71160038272571e-7
│ Relative error : 6.992660113504655e-9
│
├─ State s (L2 norm)
│
│ Absolute error : 2.82699948432636e-7
│ Relative error : 1.6118984742550558e-8
│
├─ State b (L2 norm)
│
│ Absolute error : 6.229457079560391e-7
│ Relative error : 7.511859329693764e-9
│
├─ Control u (L2 norm)
│
│ Absolute error : 2.0170976125584572e-6
│ Relative error : 2.4263528710751327e-6
│
├─ objective
│
│ Absolute error : 6.541789332459302e-10
│ Relative error : 5.0611686966333444e-11
│
└─
Plot the solutions
Visualise states, costates, and controls from the OptimalControl and JuMP solutions:
# build an ocp solution to use the plot from OptimalControl package
ocp_sol = build_ocp_solution(docp, nlp_oc_sol)
# dimensions
n = state_dimension(ocp_sol) # or length(metadata[:bioreactor][:state_name])
m = control_dimension(ocp_sol) # or length(metadata[:bioreactor][:control_name])
# from OptimalControl solution
plt = plot(
ocp_sol;
state_style=(color=1,),
costate_style=(color=1, legend=:none),
control_style=(color=1, legend=:none),
path_style=(color=1, legend=:none),
dual_style=(color=1, legend=:none),
size=(816, 240*(n+m)),
label="OptimalControl",
leftmargin=20mm,
)
for i in 2:n
plot!(plt[i]; legend=:none)
end
# from JuMP solution
t = time_grid(:bioreactor, nlp_jp) # t0, ..., tN = tf
x = state(:bioreactor, nlp_jp) # function of time
u = control(:bioreactor, nlp_jp) # function of time
p = costate(:bioreactor, nlp_jp) # function of time
for i in 1:n # state
label = i == 1 ? "JuMP" : :none
plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
end
for i in 1:n # costate
plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
end
for i in 1:m # control
plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
end