Double oscillator
The double oscillator problem is a benchmark in constrained optimal control illustrating the control of coupled mechanical systems with damping and stiffness effects. It consists of two masses connected by springs and a damper, with one mass directly influenced by an external periodic force and the other influenced indirectly through the coupling and a controlled damping term. Both the state trajectory (x(\cdot)) and the control (u(\cdot)) are decision variables. The aim is to minimise a quadratic cost that balances state deviations and control effort, subject to input constraints and the system dynamics.
The problem can be formulated as
\[\min_{x, u} J(x,u) = 0.5 \int_0^{T} \big( x_1(t)^2 + x_2(t)^2 + u(t)^2 \big) \, dt\]
subject to the dynamics
\[\dot{x}_1 = x_3, \qquad \dot{x}_2 = x_4,\]
\[\dot{x}_3 = -\frac{k_1 + k_2}{m_1} x_1 + \frac{k_2}{m_1} x_2 + \frac{1}{m_1} F(t), \qquad \dot{x}_4 = \frac{k_2}{m_2} x_1 - \frac{k_2}{m_2} x_2 - \frac{c(1-u)}{m_2} x_4,\]
with boundary conditions
\[x_1(0) = 0, \quad x_2(0) = 0\]
and the control constraint
\[-1 \le u(t) \le 1,\]
where (F(t) = \sin\left(\frac{2\pi}{T} t\right)) is a prescribed periodic forcing term and (T = 2\pi).
Qualitative behaviour
- The system exhibits coupled oscillatory dynamics due to the interaction of the two masses through the springs and damper.
- The control input modulates the damping of the second mass, influencing the amplitude and phase of its oscillations.
- The quadratic cost penalises both deviations of the masses and the control effort, leading to a trade-off between precise tracking of zero displacement and energy usage.
Characteristics
- Coupled linear–nonlinear dynamics with external periodic forcing.
- Control input enters through a damping term, introducing a nonlinearity in the system response.
- Bounded control with symmetric limits.
- Widely used to benchmark numerical methods for constrained optimal control in mechanical systems.
References
- Graichen, K., & Petit, N. (2009). Incorporating a class of constraints into the dynamics of optimal control problems. Optim. Control Appl. Methods.
- MathMod 2018: Examples on coupled mechanical systems and damping control. Link to source
Packages
Import all necessary packages and define DataFrames to store information about the problem and resolution results.
using OptimalControlProblems # to access the Beam model
using OptimalControl # to import the OptimalControl model
using NLPModelsIpopt # to solve the model with Ipopt
import DataFrames: DataFrame # to store data
using NLPModels # to retrieve data from the NLP solution
using Plots # to plot the trajectories
using Plots.PlotMeasures # for leftmargin, bottommargin
using JuMP # to import the JuMP model
using Ipopt # to solve the JuMP model with Ipopt
data_pb = DataFrame( # to store data about the problem
Problem=Symbol[],
Grid_Size=Int[],
Variables=Int[],
Constraints=Int[],
)
data_re = DataFrame( # to store data about the resolutions
Model=Symbol[],
Flag=Any[],
Iterations=Int[],
Objective=Float64[],
)
Initial guess
The initial guess (or first iterate) can be visualised by running the solver with max_iter=0
. Here is the initial guess.
Click to unfold and see the code for plotting the initial guess.
function plot_initial_guess(problem)
# dimensions
x_vars = metadata[problem][:state_name]
u_vars = metadata[problem][:control_name]
n = length(x_vars) # number of states
m = length(u_vars) # number of controls
# import OptimalControl model
docp = eval(problem)(OptimalControlBackend())
nlp_oc = nlp_model(docp)
# solve
nlp_oc_sol = NLPModelsIpopt.ipopt(nlp_oc; max_iter=0)
# build an optimal control solution
ocp_sol = build_ocp_solution(docp, nlp_oc_sol)
# plot the OptimalControl solution
plt = plot(
ocp_sol;
state_style=(color=1,),
costate_style=(color=1, legend=:none),
control_style=(color=1, legend=:none),
path_style=(color=1, legend=:none),
dual_style=(color=1, legend=:none),
size=(816, 220*(n+m)),
label="OptimalControl",
leftmargin=20mm,
)
for i in 2:n
plot!(plt[i]; legend=:none)
end
# import JuMP model
nlp_jp = eval(problem)(JuMPBackend())
# solve
set_optimizer(nlp_jp, Ipopt.Optimizer)
set_optimizer_attribute(nlp_jp, "max_iter", 0)
optimize!(nlp_jp)
# plot
t = time_grid(problem, nlp_jp) # t0, ..., tN = tf
x = state(problem, nlp_jp) # function of time
u = control(problem, nlp_jp) # function of time
p = costate(problem, nlp_jp) # function of time
for i in 1:n # state
label = i == 1 ? "JuMP" : :none
plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
end
for i in 1:n # costate
plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
end
for i in 1:m # control
plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
end
return plt
end
plot_initial_guess(:double_oscillator)
Solve the problem
OptimalControl model
Import the OptimalControl model and solve it.
# import DOCP model
docp = double_oscillator(OptimalControlBackend())
# get NLP model
nlp_oc = nlp_model(docp)
# solve
nlp_oc_sol = NLPModelsIpopt.ipopt(
nlp_oc;
print_level=4,
tol=1e-8,
mu_strategy="adaptive",
sb="yes",
)
Total number of variables............................: 2505
variables with only lower bounds: 0
variables with lower and upper bounds: 501
variables with only upper bounds: 0
Total number of equality constraints.................: 2002
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
Number of Iterations....: 5
(scaled) (unscaled)
Objective...............: 9.1092303325188606e-04 9.1092303325188606e-04
Dual infeasibility......: 2.4800598830796093e-11 2.4800598830796093e-11
Constraint violation....: 2.8844981958542348e-14 2.8844981958542348e-14
Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 1.1433037624511418e-10 1.1433037624511418e-10
Overall NLP error.......: 1.1433037624511418e-10 1.1433037624511418e-10
Number of objective function evaluations = 6
Number of objective gradient evaluations = 6
Number of equality constraint evaluations = 6
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 6
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 5
Total seconds in IPOPT = 0.501
EXIT: Optimal Solution Found.
The problem has the following numbers of steps, variables and constraints.
push!(data_pb,
(
Problem=:double_oscillator,
Grid_Size=metadata[:double_oscillator][:N],
Variables=get_nvar(nlp_oc),
Constraints=get_ncon(nlp_oc),
)
)
Row | Problem | Grid_Size | Variables | Constraints |
---|---|---|---|---|
Symbol | Int64 | Int64 | Int64 | |
1 | double_oscillator | 500 | 2505 | 2002 |
JuMP model
Import the JuMP model and solve it.
# import model
nlp_jp = double_oscillator(JuMPBackend())
# solve
set_optimizer(nlp_jp, Ipopt.Optimizer)
set_optimizer_attribute(nlp_jp, "print_level", 4)
set_optimizer_attribute(nlp_jp, "tol", 1e-8)
set_optimizer_attribute(nlp_jp, "mu_strategy", "adaptive")
set_optimizer_attribute(nlp_jp, "linear_solver", "mumps")
set_optimizer_attribute(nlp_jp, "sb", "yes")
optimize!(nlp_jp)
Total number of variables............................: 2505
variables with only lower bounds: 0
variables with lower and upper bounds: 501
variables with only upper bounds: 0
Total number of equality constraints.................: 2002
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
Number of Iterations....: 5
(scaled) (unscaled)
Objective...............: 9.1092303325188714e-04 9.1092303325188714e-04
Dual infeasibility......: 2.4800598830797373e-11 2.4800598830797373e-11
Constraint violation....: 2.8849464343422145e-14 2.8849464343422145e-14
Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 1.1433037624511418e-10 1.1433037624511418e-10
Overall NLP error.......: 1.1433037624511418e-10 1.1433037624511418e-10
Number of objective function evaluations = 6
Number of objective gradient evaluations = 6
Number of equality constraint evaluations = 6
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 6
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 5
Total seconds in IPOPT = 0.020
EXIT: Optimal Solution Found.
Numerical comparisons
Let's get the flag, the number of iterations and the objective value from the resolutions.
# from OptimalControl model
push!(data_re,
(
Model=:OptimalControl,
Flag=nlp_oc_sol.status,
Iterations=nlp_oc_sol.iter,
Objective=nlp_oc_sol.objective,
)
)
# from JuMP model
push!(data_re,
(
Model=:JuMP,
Flag=termination_status(nlp_jp),
Iterations=barrier_iterations(nlp_jp),
Objective=objective_value(nlp_jp),
)
)
Row | Model | Flag | Iterations | Objective |
---|---|---|---|---|
Symbol | Any | Int64 | Float64 | |
1 | OptimalControl | first_order | 5 | 0.000910923 |
2 | JuMP | LOCALLY_SOLVED | 5 | 0.000910923 |
We compare the OptimalControl and JuMP solutions in terms of the number of iterations, the $L^2$-norm of the differences in the state, control, and variable, as well as the objective values. Both absolute and relative errors are reported.
Click to unfold and get the code of the numerical comparison.
function L2_norm(T, X)
# T and X are supposed to be one dimensional
s = 0.0
for i in 1:(length(T) - 1)
s += 0.5 * (X[i]^2 + X[i + 1]^2) * (T[i + 1]-T[i])
end
return √(s)
end
function numerical_comparison(problem, docp, nlp_oc_sol, nlp_jp)
# get relevant data from OptimalControl model
ocp_sol = build_ocp_solution(docp, nlp_oc_sol) # build an ocp solution
t_oc = time_grid(ocp_sol)
x_oc = state(ocp_sol).(t_oc)
u_oc = control(ocp_sol).(t_oc)
v_oc = variable(ocp_sol)
o_oc = objective(ocp_sol)
i_oc = iterations(ocp_sol)
# get relevant data from JuMP model
t_jp = time_grid(problem, nlp_jp)
x_jp = state(problem, nlp_jp).(t_jp)
u_jp = control(problem, nlp_jp).(t_jp)
o_jp = objective(problem, nlp_jp)
v_jp = variable(problem, nlp_jp)
i_jp = iterations(problem, nlp_jp)
x_vars = metadata[problem][:state_name]
u_vars = metadata[problem][:control_name]
v_vars = metadata[problem][:variable_name]
println("┌─ ", string(problem))
println("│")
# number of iterations
println("├─ Number of iterations")
println("│")
println("│ OptimalControl : ", i_oc)
println("│ JuMP : ", i_jp)
println("│")
# state
for i in eachindex(x_vars)
xi_oc = [x_oc[k][i] for k in eachindex(t_oc)]
xi_jp = [x_jp[k][i] for k in eachindex(t_jp)]
L2_oc = L2_norm(t_oc, xi_oc)
L2_jp = L2_norm(t_oc, xi_jp)
L2_ae = L2_norm(t_oc, xi_oc-xi_jp)
L2_re = L2_ae/(0.5*(L2_oc + L2_jp))
println("├─ State $(x_vars[i]) (L2 norm)")
println("│")
#println("│ OptimalControl : ", L2_oc)
#println("│ JuMP : ", L2_jp)
println("│ Absolute error : ", L2_ae)
println("│ Relative error : ", L2_re)
println("│")
end
# control
for i in eachindex(u_vars)
ui_oc = [u_oc[k][i] for k in eachindex(t_oc)]
ui_jp = [u_jp[k][i] for k in eachindex(t_jp)]
L2_oc = L2_norm(t_oc, ui_oc)
L2_jp = L2_norm(t_oc, ui_jp)
L2_ae = L2_norm(t_oc, ui_oc-ui_jp)
L2_re = L2_ae/(0.5*(L2_oc + L2_jp))
println("├─ Control $(u_vars[i]) (L2 norm)")
println("│")
#println("│ OptimalControl : ", L2_oc)
#println("│ JuMP : ", L2_jp)
println("│ Absolute error : ", L2_ae)
println("│ Relative error : ", L2_re)
println("│")
end
# variable
if !isnothing(v_vars)
for i in eachindex(v_vars)
vi_oc = v_oc[i]
vi_jp = v_jp[i]
vi_ae = abs(vi_oc-vi_jp)
vi_re = vi_ae/(0.5*(abs(vi_oc) + abs(vi_jp)))
println("├─ Variable $(v_vars[i])")
println("│")
#println("│ OptimalControl : ", vi_oc)
#println("│ JuMP : ", vi_jp)
println("│ Absolute error : ", vi_ae)
println("│ Relative error : ", vi_re)
println("│")
end
end
# objective
o_ae = abs(o_oc-o_jp)
o_re = o_ae/(0.5*(abs(o_oc) + abs(o_jp)))
println("├─ objective")
println("│")
#println("│ OptimalControl : ", o_oc)
#println("│ JuMP : ", o_jp)
println("│ Absolute error : ", o_ae)
println("│ Relative error : ", o_re)
println("│")
println("└─")
return nothing
end
numerical_comparison(:double_oscillator, docp, nlp_oc_sol, nlp_jp)
┌─ double_oscillator
│
├─ Number of iterations
│
│ OptimalControl : 5
│ JuMP : 5
│
├─ State x1 (L2 norm)
│
│ Absolute error : 6.394245191993007e-17
│ Relative error : 1.945157195775726e-15
│
├─ State x2 (L2 norm)
│
│ Absolute error : 1.3063014393116517e-16
│ Relative error : 4.798066451389666e-15
│
├─ State x3 (L2 norm)
│
│ Absolute error : 6.216464433417614e-17
│ Relative error : 1.88387026323633e-15
│
├─ State x4 (L2 norm)
│
│ Absolute error : 1.79415514775957e-16
│ Relative error : 4.098995609944975e-15
│
├─ Control u (L2 norm)
│
│ Absolute error : 4.468033767211151e-19
│ Relative error : 7.675374390900447e-15
│
├─ objective
│
│ Absolute error : 1.0842021724855044e-18
│ Relative error : 1.190223688399921e-15
│
└─
Plot the solutions
Visualise states, costates, and controls from the OptimalControl and JuMP solutions:
# build an ocp solution to use the plot from OptimalControl package
ocp_sol = build_ocp_solution(docp, nlp_oc_sol)
# dimensions
n = state_dimension(ocp_sol) # or length(metadata[:double_oscillator][:state_name])
m = control_dimension(ocp_sol) # or length(metadata[:double_oscillator][:control_name])
# from OptimalControl solution
plt = plot(
ocp_sol;
state_style=(color=1,),
costate_style=(color=1, legend=:none),
control_style=(color=1, legend=:none),
path_style=(color=1, legend=:none),
dual_style=(color=1, legend=:none),
size=(816, 240*(n+m)),
label="OptimalControl",
leftmargin=20mm,
)
for i in 2:n
plot!(plt[i]; legend=:none)
end
# from JuMP solution
t = time_grid(:double_oscillator, nlp_jp) # t0, ..., tN = tf
x = state(:double_oscillator, nlp_jp) # function of time
u = control(:double_oscillator, nlp_jp) # function of time
p = costate(:double_oscillator, nlp_jp) # function of time
for i in 1:n # state
label = i == 1 ? "JuMP" : :none
plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
end
for i in 1:n # costate
plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
end
for i in 1:m # control
plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
end