Space shuttle
The space shuttle reentry problem is a classical benchmark in aerospace optimal control, originating from reentry trajectory studies (see Betts 2010, Bulirsch 1971, Dickmanns 1972). It describes the atmospheric descent of the space shuttle from high altitude to the Terminal Area Energy Management (TAEM) interface. The aim is to maximise the crossrange, i.e. the final latitude at TAEM, subject to nonlinear dynamics, control bounds, and path constraints.
The problem can be written as
\[\max_{x,\,u} J(x,u) = \theta(t_f),\]
or equivalently
\[\min_{x,\,u} J(x,u) = -\theta(t_f),\]
subject to the dynamics
\[\begin{aligned} \dot{h}(t) &= v(t)\,\sin \gamma(t), \\ \dot{\phi}(t) &= \tfrac{v(t)}{r(t)} \cos \gamma(t) \sin \psi(t) / \cos \theta(t), \\ \dot{\theta}(t) &= \tfrac{v(t)}{r(t)} \cos \gamma(t) \cos \psi(t), \\ \dot{v}(t) &= -\tfrac{D}{m} - g(t)\,\sin \gamma(t), \\ \dot{\gamma}(t) &= \tfrac{L}{m v(t)} \cos \beta(t) + \cos \gamma(t)\Big(\tfrac{v(t)}{r(t)} - \tfrac{g(t)}{v(t)}\Big), \\ \dot{\psi}(t) &= \tfrac{L}{m v(t)\cos \gamma(t)} \sin \beta(t) + \tfrac{v(t)}{r(t)\cos \theta(t)} \cos \gamma(t)\sin \psi(t)\sin \theta(t), \end{aligned}\]
with aerodynamic lift and drag
\[D = \tfrac{1}{2} c_D S \rho v^2, \qquad L = \tfrac{1}{2} c_L S \rho v^2,\]
where the coefficients are given by
\[c_D = b_0 + b_1 \alpha^\circ + b_2 (\alpha^\circ)^2, \qquad c_L = a_0 + a_1 \alpha^\circ, \qquad \alpha^\circ = \tfrac{180}{\pi} \alpha,\]
and
\[\rho = \rho_0 e^{-h/h_r}, \qquad r = R_e + h, \qquad g = \tfrac{\mu}{r^2}.\]
Boundary conditions
At reentry interface ($t=0$):
\[h(0) = 260{,}000 \ \text{ft}, \quad v(0) = 25{,}600 \ \text{ft/s}, \quad \phi(0)=0, \quad \theta(0)=0, \quad \gamma(0)=-1^\circ, \quad \psi(0)=90^\circ.\]
At TAEM interface ($t=t_f$):
\[h(t_f) = 80{,}000 \ \text{ft}, \quad v(t_f) = 2{,}500 \ \text{ft/s}, \quad \gamma(t_f) = -5^\circ.\]
Final time is free within
\[500\Delta t_{\min} \le t_f \le 500\Delta t_{\max}, \qquad \Delta t_{\min}=3.5, \quad \Delta t_{\max}=4.5.\]
Constraints
- State bounds:
\[h(t) \ge 0, \qquad -89^\circ \le \theta(t) \le 89^\circ, \qquad v(t) \ge 0, \qquad -89^\circ \le \gamma(t) \le 89^\circ.\]
- Control bounds:
\[-90^\circ \le \alpha(t) \le 90^\circ, \qquad -89^\circ \le \beta(t) \le 1^\circ.\]
Qualitative behaviour
- The optimal trajectory balances lift and drag to control heating and deceleration while extending crossrange.
- The bank angle $\beta$ determines heading changes and crossrange capability.
- The solution typically includes a combination of steep reentry to dissipate energy and crossrange manoeuvres to reach the target latitude.
Characteristics
- Nonlinear, six–state dynamics with two controls.
- Strongly nonlinear aerodynamic coefficients.
- Free final time with bounded range.
- Path constraints on both states and controls.
- Widely used as a benchmark in optimal control and trajectory optimisation.
References
- Betts, J.T. (2010). Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM.
- Bulirsch, R. (1971). Numerical solution of optimal control problems with state constraints by direct methods. Numerische Mathematik.
- Dickmanns, E.D. (1972). Numerical solution methods for nonlinear optimal control problems with state constraints. Automatica.
- Ascher, U.M., Mattheij, R.M.M., & Russell, R.D. (1988). Numerical Solution of Boundary Value Problems for Ordinary Differential Equations.
Packages
Import all necessary packages and define DataFrames to store information about the problem and resolution results.
using OptimalControlProblems # to access the Beam model
using OptimalControl # to import the OptimalControl model
using NLPModelsIpopt # to solve the model with Ipopt
import DataFrames: DataFrame # to store data
using NLPModels # to retrieve data from the NLP solution
using Plots # to plot the trajectories
using Plots.PlotMeasures # for leftmargin, bottommargin
using JuMP # to import the JuMP model
using Ipopt # to solve the JuMP model with Ipopt
data_pb = DataFrame( # to store data about the problem
Problem=Symbol[],
Grid_Size=Int[],
Variables=Int[],
Constraints=Int[],
)
data_re = DataFrame( # to store data about the resolutions
Model=Symbol[],
Flag=Any[],
Iterations=Int[],
Objective=Float64[],
)
Initial guess
The initial guess (or first iterate) can be visualised by running the solver with max_iter=0
. Here is the initial guess.
Click to unfold and see the code for plotting the initial guess.
function plot_initial_guess(problem)
# dimensions
x_vars = metadata[problem][:state_name]
u_vars = metadata[problem][:control_name]
n = length(x_vars) # number of states
m = length(u_vars) # number of controls
# import OptimalControl model
docp = eval(problem)(OptimalControlBackend())
nlp_oc = nlp_model(docp)
# solve
nlp_oc_sol = NLPModelsIpopt.ipopt(nlp_oc; max_iter=0)
# build an optimal control solution
ocp_sol = build_ocp_solution(docp, nlp_oc_sol)
# plot the OptimalControl solution
plt = plot(
ocp_sol;
state_style=(color=1,),
costate_style=(color=1, legend=:none),
control_style=(color=1, legend=:none),
path_style=(color=1, legend=:none),
dual_style=(color=1, legend=:none),
size=(816, 220*(n+m)),
label="OptimalControl",
leftmargin=20mm,
)
for i in 2:n
plot!(plt[i]; legend=:none)
end
# import JuMP model
nlp_jp = eval(problem)(JuMPBackend())
# solve
set_optimizer(nlp_jp, Ipopt.Optimizer)
set_optimizer_attribute(nlp_jp, "max_iter", 0)
optimize!(nlp_jp)
# plot
t = time_grid(problem, nlp_jp) # t0, ..., tN = tf
x = state(problem, nlp_jp) # function of time
u = control(problem, nlp_jp) # function of time
p = costate(problem, nlp_jp) # function of time
for i in 1:n # state
label = i == 1 ? "JuMP" : :none
plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
end
for i in 1:n # costate
plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
end
for i in 1:m # control
plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
end
return plt
end
plot_initial_guess(:space_shuttle)
Solve the problem
OptimalControl model
Import the OptimalControl model and solve it.
# import DOCP model
docp = space_shuttle(OptimalControlBackend())
# get NLP model
nlp_oc = nlp_model(docp)
# solve
nlp_oc_sol = NLPModelsIpopt.ipopt(
nlp_oc;
print_level=4,
tol=1e-8,
mu_strategy="adaptive",
sb="yes",
)
Total number of variables............................: 4009
variables with only lower bounds: 1002
variables with lower and upper bounds: 3007
variables with only upper bounds: 0
Total number of equality constraints.................: 3009
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
Number of Iterations....: 111
(scaled) (unscaled)
Objective...............: -5.9587501336062354e-01 -5.9587501336062354e-01
Dual infeasibility......: 5.0870214995865162e-12 5.0870214995865162e-12
Constraint violation....: 1.0156368801528259e-10 1.0156368801528259e-10
Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 1.1846058016074259e-11 1.1846058016074259e-11
Overall NLP error.......: 1.0156368801528259e-10 1.0156368801528259e-10
Number of objective function evaluations = 112
Number of objective gradient evaluations = 112
Number of equality constraint evaluations = 112
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 112
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 111
Total seconds in IPOPT = 4.157
EXIT: Optimal Solution Found.
The problem has the following numbers of steps, variables and constraints.
push!(data_pb,
(
Problem=:space_shuttle,
Grid_Size=metadata[:space_shuttle][:N],
Variables=get_nvar(nlp_oc),
Constraints=get_ncon(nlp_oc),
)
)
Row | Problem | Grid_Size | Variables | Constraints |
---|---|---|---|---|
Symbol | Int64 | Int64 | Int64 | |
1 | space_shuttle | 500 | 4009 | 3009 |
JuMP model
Import the JuMP model and solve it.
# import model
nlp_jp = space_shuttle(JuMPBackend())
# solve
set_optimizer(nlp_jp, Ipopt.Optimizer)
set_optimizer_attribute(nlp_jp, "print_level", 4)
set_optimizer_attribute(nlp_jp, "tol", 1e-8)
set_optimizer_attribute(nlp_jp, "mu_strategy", "adaptive")
set_optimizer_attribute(nlp_jp, "linear_solver", "mumps")
set_optimizer_attribute(nlp_jp, "sb", "yes")
optimize!(nlp_jp)
Total number of variables............................: 4009
variables with only lower bounds: 1002
variables with lower and upper bounds: 3007
variables with only upper bounds: 0
Total number of equality constraints.................: 3009
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
Number of Iterations....: 115
(scaled) (unscaled)
Objective...............: -5.9587501342513927e-01 -5.9587501342513927e-01
Dual infeasibility......: 3.4752779650690412e-10 3.4752779650690412e-10
Constraint violation....: 7.0471158353235808e-09 7.0471158353235808e-09
Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 1.3610888211002065e-10 1.3610888211002065e-10
Overall NLP error.......: 7.0471158353235808e-09 7.0471158353235808e-09
Number of objective function evaluations = 116
Number of objective gradient evaluations = 116
Number of equality constraint evaluations = 116
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 116
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 115
Total seconds in IPOPT = 7.387
EXIT: Optimal Solution Found.
Numerical comparisons
Let's get the flag, the number of iterations and the objective value from the resolutions.
# from OptimalControl model
push!(data_re,
(
Model=:OptimalControl,
Flag=nlp_oc_sol.status,
Iterations=nlp_oc_sol.iter,
Objective=nlp_oc_sol.objective,
)
)
# from JuMP model
push!(data_re,
(
Model=:JuMP,
Flag=termination_status(nlp_jp),
Iterations=barrier_iterations(nlp_jp),
Objective=objective_value(nlp_jp),
)
)
Row | Model | Flag | Iterations | Objective |
---|---|---|---|---|
Symbol | Any | Int64 | Float64 | |
1 | OptimalControl | first_order | 111 | -0.595875 |
2 | JuMP | LOCALLY_SOLVED | 115 | -0.595875 |
We compare the OptimalControl and JuMP solutions in terms of the number of iterations, the $L^2$-norm of the differences in the state, control, and variable, as well as the objective values. Both absolute and relative errors are reported.
Click to unfold and get the code of the numerical comparison.
function L2_norm(T, X)
# T and X are supposed to be one dimensional
s = 0.0
for i in 1:(length(T) - 1)
s += 0.5 * (X[i]^2 + X[i + 1]^2) * (T[i + 1]-T[i])
end
return √(s)
end
function numerical_comparison(problem, docp, nlp_oc_sol, nlp_jp)
# get relevant data from OptimalControl model
ocp_sol = build_ocp_solution(docp, nlp_oc_sol) # build an ocp solution
t_oc = time_grid(ocp_sol)
x_oc = state(ocp_sol).(t_oc)
u_oc = control(ocp_sol).(t_oc)
v_oc = variable(ocp_sol)
o_oc = objective(ocp_sol)
i_oc = iterations(ocp_sol)
# get relevant data from JuMP model
t_jp = time_grid(problem, nlp_jp)
x_jp = state(problem, nlp_jp).(t_jp)
u_jp = control(problem, nlp_jp).(t_jp)
o_jp = objective(problem, nlp_jp)
v_jp = variable(problem, nlp_jp)
i_jp = iterations(problem, nlp_jp)
x_vars = metadata[problem][:state_name]
u_vars = metadata[problem][:control_name]
v_vars = metadata[problem][:variable_name]
println("┌─ ", string(problem))
println("│")
# number of iterations
println("├─ Number of iterations")
println("│")
println("│ OptimalControl : ", i_oc)
println("│ JuMP : ", i_jp)
println("│")
# state
for i in eachindex(x_vars)
xi_oc = [x_oc[k][i] for k in eachindex(t_oc)]
xi_jp = [x_jp[k][i] for k in eachindex(t_jp)]
L2_oc = L2_norm(t_oc, xi_oc)
L2_jp = L2_norm(t_oc, xi_jp)
L2_ae = L2_norm(t_oc, xi_oc-xi_jp)
L2_re = L2_ae/(0.5*(L2_oc + L2_jp))
println("├─ State $(x_vars[i]) (L2 norm)")
println("│")
#println("│ OptimalControl : ", L2_oc)
#println("│ JuMP : ", L2_jp)
println("│ Absolute error : ", L2_ae)
println("│ Relative error : ", L2_re)
println("│")
end
# control
for i in eachindex(u_vars)
ui_oc = [u_oc[k][i] for k in eachindex(t_oc)]
ui_jp = [u_jp[k][i] for k in eachindex(t_jp)]
L2_oc = L2_norm(t_oc, ui_oc)
L2_jp = L2_norm(t_oc, ui_jp)
L2_ae = L2_norm(t_oc, ui_oc-ui_jp)
L2_re = L2_ae/(0.5*(L2_oc + L2_jp))
println("├─ Control $(u_vars[i]) (L2 norm)")
println("│")
#println("│ OptimalControl : ", L2_oc)
#println("│ JuMP : ", L2_jp)
println("│ Absolute error : ", L2_ae)
println("│ Relative error : ", L2_re)
println("│")
end
# variable
if !isnothing(v_vars)
for i in eachindex(v_vars)
vi_oc = v_oc[i]
vi_jp = v_jp[i]
vi_ae = abs(vi_oc-vi_jp)
vi_re = vi_ae/(0.5*(abs(vi_oc) + abs(vi_jp)))
println("├─ Variable $(v_vars[i])")
println("│")
#println("│ OptimalControl : ", vi_oc)
#println("│ JuMP : ", vi_jp)
println("│ Absolute error : ", vi_ae)
println("│ Relative error : ", vi_re)
println("│")
end
end
# objective
o_ae = abs(o_oc-o_jp)
o_re = o_ae/(0.5*(abs(o_oc) + abs(o_jp)))
println("├─ objective")
println("│")
#println("│ OptimalControl : ", o_oc)
#println("│ JuMP : ", o_jp)
println("│ Absolute error : ", o_ae)
println("│ Relative error : ", o_re)
println("│")
println("└─")
return nothing
end
numerical_comparison(:space_shuttle, docp, nlp_oc_sol, nlp_jp)
┌─ space_shuttle
│
├─ Number of iterations
│
│ OptimalControl : 111
│ JuMP : 115
│
├─ State scaled_h (L2 norm)
│
│ Absolute error : 2.990757986902121e-8
│ Relative error : 3.777491252937329e-10
│
├─ State ϕ (L2 norm)
│
│ Absolute error : 1.296165822056119e-8
│ Relative error : 2.981281800173441e-10
│
├─ State θ (L2 norm)
│
│ Absolute error : 4.390275094587482e-9
│ Relative error : 2.9349777010298746e-10
│
├─ State scaled_v (L2 norm)
│
│ Absolute error : 2.00130695151268e-8
│ Relative error : 2.573845022624617e-10
│
├─ State γ (L2 norm)
│
│ Absolute error : 3.938722711290643e-8
│ Relative error : 4.312726121907823e-8
│
├─ State ψ (L2 norm)
│
│ Absolute error : 9.428800855564053e-7
│ Relative error : 2.030973673684248e-8
│
├─ Control α (L2 norm)
│
│ Absolute error : 7.33882393603085e-8
│ Relative error : 5.393983800953857e-9
│
├─ Control β (L2 norm)
│
│ Absolute error : 3.437342039243316e-5
│ Relative error : 9.560666076894881e-7
│
├─ Variable tf
│
│ Absolute error : 7.695930435147602e-7
│ Relative error : 3.831507711074259e-10
│
├─ objective
│
│ Absolute error : 6.451572609478262e-11
│ Relative error : 1.0827056789549444e-10
│
└─
Plot the solutions
Visualise states, costates, and controls from the OptimalControl and JuMP solutions:
# build an ocp solution to use the plot from OptimalControl package
ocp_sol = build_ocp_solution(docp, nlp_oc_sol)
# dimensions
n = state_dimension(ocp_sol) # or length(metadata[:space_shuttle][:state_name])
m = control_dimension(ocp_sol) # or length(metadata[:space_shuttle][:control_name])
# from OptimalControl solution
plt = plot(
ocp_sol;
state_style=(color=1,),
costate_style=(color=1, legend=:none),
control_style=(color=1, legend=:none),
path_style=(color=1, legend=:none),
dual_style=(color=1, legend=:none),
size=(816, 240*(n+m)),
label="OptimalControl",
leftmargin=20mm,
)
for i in 2:n
plot!(plt[i]; legend=:none)
end
# from JuMP solution
t = time_grid(:space_shuttle, nlp_jp) # t0, ..., tN = tf
x = state(:space_shuttle, nlp_jp) # function of time
u = control(:space_shuttle, nlp_jp) # function of time
p = costate(:space_shuttle, nlp_jp) # function of time
for i in 1:n # state
label = i == 1 ? "JuMP" : :none
plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
end
for i in 1:n # costate
plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
end
for i in 1:m # control
plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
end