Robot

This problem models the time-optimal motion of a robot arm moving between two points, following the formulation of Mössner-Beigel (PhD thesis, Heidelberg University) and the implementation described by Vanderbei (2001). The arm is represented as a rigid bar of total length $L$, pivoting at the origin of a spherical coordinate system.

System Description

  • The arm protrudes a distance $\rho$ from the origin in one direction, and $L - \rho$ in the opposite direction.
  • The orientation of the arm is described by two angles:
    • \[\theta\]

      : horizontal angle from the plane, with bounds $|\theta| \leq \pi$
    • \[\varphi\]

      : vertical angle, with bounds $0 \leq \varphi \leq \pi$

The state variables are:

\[x = (\rho, \dot{\rho}, \theta, \dot{\theta}, \varphi, \dot{\varphi})\]

The control inputs are:

\[u = (u_{\rho}, u_{\theta}, u_{\varphi})\]

Dynamics

The continuous-time dynamics are governed by the second-order system:

\[L \ddot{\rho} = u_{\rho}\]

\[I_{\theta} \ddot{\theta} = u_{\theta}\]

\[I_{\varphi} \ddot{\varphi} = u_{\varphi}\]

where the moments of inertia are defined as:

\[I_{\theta} = \big( (L - \rho)^3 + \rho^3 \big) \sin^2(\varphi)\]

\[I_{\varphi} = (L - \rho)^3 + \rho^3\]

In first-order form, with states $(\rho, \dot{\rho}, \theta, \dot{\theta}, \varphi, \dot{\varphi})$, the dynamics become:

\[\dot{\rho} = \dot{\rho}, \quad \ddot{\rho} = \frac{u_{\rho}}{L}\]

\[\dot{\theta} = \dot{\theta}, \quad \ddot{\theta} = \frac{3u_{\theta}}{I_{\theta}}\]

\[\dot{\varphi} = \dot{\varphi}, \quad \ddot{\varphi} = \frac{3u_{\varphi}}{I_{\varphi}}\]

Constraints

  • State constraints:

\[0 \leq \rho(t) \leq L\]

\[-\pi \leq \theta(t) \leq \pi\]

\[0 \leq \varphi(t) \leq \pi\]

  • Control constraints:

\[|u_{\rho}(t)| \leq 1, \quad |u_{\theta}(t)| \leq 1, \quad |u_{\varphi}(t)| \leq 1\]

  • Initial conditions:

\[\rho(0) = 4.5, \quad \theta(0) = 0, \quad \varphi(0) = \pi/4\]

\[\dot{\rho}(0) = \dot{\theta}(0) = \dot{\varphi}(0) = 0\]

  • Final conditions:

\[\rho(T) = 4.5, \quad \theta(T) = \tfrac{2\pi}{3}, \quad \varphi(T) = \pi/4\]

\[\dot{\rho}(T) = \dot{\theta}(T) = \dot{\varphi}(T) = 0\]

Objective

The objective is to minimise the transfer time $T$:

\[J = T \to \min\]

Remarks

This model is simplified, as it ignores the non-inertial nature of the spherical coordinate frame (i.e., Coriolis and centrifugal forces are not included). Vanderbei’s implementation eliminates the controls $u$ by substitution, transforming the equations of motion into inequality constraints on accelerations.

References

  • Mössner-Beigel, M. (1989). Thesis, Heidelberg University.
  • Vanderbei, R. J. (2001). Case studies in trajectory optimization: Trains, Planes, and Other Pastimes.
  • More, J., Garbow, B., Hillstrom, K., & Watson, L. (2001). COPS: Constrained Optimization Problem Set (COPS3). Argonne National Laboratory. Retrieved from https://www.mcs.anl.gov/~more/cops/cops3.pdf

Packages

Import all necessary packages and define DataFrames to store information about the problem and resolution results.

using OptimalControlProblems    # to access the Beam model
using OptimalControl            # to import the OptimalControl model
using NLPModelsIpopt            # to solve the model with Ipopt
import DataFrames: DataFrame    # to store data
using NLPModels                 # to retrieve data from the NLP solution
using Plots                     # to plot the trajectories
using Plots.PlotMeasures        # for leftmargin, bottommargin
using JuMP                      # to import the JuMP model
using Ipopt                     # to solve the JuMP model with Ipopt

data_pb = DataFrame(            # to store data about the problem
    Problem=Symbol[],
    Grid_Size=Int[],
    Variables=Int[],
    Constraints=Int[],
)

data_re = DataFrame(            # to store data about the resolutions
    Model=Symbol[],
    Flag=Any[],
    Iterations=Int[],
    Objective=Float64[],
)

Initial guess

The initial guess (or first iterate) can be visualised by running the solver with max_iter=0. Here is the initial guess.

Click to unfold and see the code for plotting the initial guess.
function plot_initial_guess(problem)

    # dimensions
    x_vars = metadata[problem][:state_name]
    u_vars = metadata[problem][:control_name]
    n = length(x_vars) # number of states
    m = length(u_vars) # number of controls

    # import OptimalControl model
    docp = eval(problem)(OptimalControlBackend())
    nlp_oc = nlp_model(docp)

    # solve
    nlp_oc_sol = NLPModelsIpopt.ipopt(nlp_oc; max_iter=0)

    # build an optimal control solution
    ocp_sol = build_ocp_solution(docp, nlp_oc_sol)

    # plot the OptimalControl solution
    plt = plot(
        ocp_sol;
        state_style=(color=1,),
        costate_style=(color=1, legend=:none),
        control_style=(color=1, legend=:none),
        path_style=(color=1, legend=:none),
        dual_style=(color=1, legend=:none),
        size=(816, 220*(n+m)),
        label="OptimalControl",
        leftmargin=20mm,
    )
    for i in 2:n
        plot!(plt[i]; legend=:none)
    end

    # import JuMP model
    nlp_jp = eval(problem)(JuMPBackend())

    # solve
    set_optimizer(nlp_jp, Ipopt.Optimizer)
    set_optimizer_attribute(nlp_jp, "max_iter", 0)
    optimize!(nlp_jp)

    # plot
    t = time_grid(problem, nlp_jp)     # t0, ..., tN = tf
    x = state(problem, nlp_jp)         # function of time
    u = control(problem, nlp_jp)       # function of time
    p = costate(problem, nlp_jp)       # function of time

    for i in 1:n # state
        label = i == 1 ? "JuMP" : :none
        plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
    end

    for i in 1:n # costate
        plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
    end

    for i in 1:m # control
        plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
    end

    return plt
end

plot_initial_guess(:robot)
Example block output

Solve the problem

OptimalControl model

Import the OptimalControl model and solve it.

# import DOCP model
docp = robot(OptimalControlBackend())

# get NLP model
nlp_oc = nlp_model(docp)

# solve
nlp_oc_sol = NLPModelsIpopt.ipopt(
    nlp_oc;
    print_level=4,
    tol=1e-8,
    mu_strategy="adaptive",
    sb="yes",
)
Total number of variables............................:     2260
                     variables with only lower bounds:        1
                variables with lower and upper bounds:     1506
                     variables with only upper bounds:        0
Total number of equality constraints.................:     1512
Total number of inequality constraints...............:        0
        inequality constraints with only lower bounds:        0
   inequality constraints with lower and upper bounds:        0
        inequality constraints with only upper bounds:        0


Number of Iterations....: 19

                                   (scaled)                 (unscaled)
Objective...............:   9.1411253337358431e+00    9.1411253337358431e+00
Dual infeasibility......:   7.9424516169664117e-09    7.9424516169664117e-09
Constraint violation....:   1.1444345471289807e-11    1.1444345471289807e-11
Variable bound violation:   9.9006365328335733e-09    9.9006365328335733e-09
Complementarity.........:   1.6907072724884652e-09    1.6907072724884652e-09
Overall NLP error.......:   7.9424516169664117e-09    7.9424516169664117e-09


Number of objective function evaluations             = 20
Number of objective gradient evaluations             = 20
Number of equality constraint evaluations            = 20
Number of inequality constraint evaluations          = 0
Number of equality constraint Jacobian evaluations   = 20
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations             = 19
Total seconds in IPOPT                               = 0.646

EXIT: Optimal Solution Found.

The problem has the following numbers of steps, variables and constraints.

push!(data_pb,
    (
        Problem=:robot,
        Grid_Size=metadata[:robot][:N],
        Variables=get_nvar(nlp_oc),
        Constraints=get_ncon(nlp_oc),
    )
)
1×4 DataFrame
RowProblemGrid_SizeVariablesConstraints
SymbolInt64Int64Int64
1robot25022601512

JuMP model

Import the JuMP model and solve it.

# import model
nlp_jp = robot(JuMPBackend())

# solve
set_optimizer(nlp_jp, Ipopt.Optimizer)
set_optimizer_attribute(nlp_jp, "print_level", 4)
set_optimizer_attribute(nlp_jp, "tol", 1e-8)
set_optimizer_attribute(nlp_jp, "mu_strategy", "adaptive")
set_optimizer_attribute(nlp_jp, "linear_solver", "mumps")
set_optimizer_attribute(nlp_jp, "sb", "yes")
optimize!(nlp_jp)
Total number of variables............................:     2260
                     variables with only lower bounds:        1
                variables with lower and upper bounds:     1506
                     variables with only upper bounds:        0
Total number of equality constraints.................:     1512
Total number of inequality constraints...............:        0
        inequality constraints with only lower bounds:        0
   inequality constraints with lower and upper bounds:        0
        inequality constraints with only upper bounds:        0


Number of Iterations....: 19

                                   (scaled)                 (unscaled)
Objective...............:   9.1411253337358431e+00    9.1411253337358431e+00
Dual infeasibility......:   7.9424516360483699e-09    7.9424516360483699e-09
Constraint violation....:   1.1444380599440196e-11    1.1444380599440196e-11
Variable bound violation:   9.9006365328335733e-09    9.9006365328335733e-09
Complementarity.........:   1.6907072723147017e-09    1.6907072723147017e-09
Overall NLP error.......:   7.9424516360483699e-09    7.9424516360483699e-09


Number of objective function evaluations             = 20
Number of objective gradient evaluations             = 20
Number of equality constraint evaluations            = 20
Number of inequality constraint evaluations          = 0
Number of equality constraint Jacobian evaluations   = 20
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations             = 19
Total seconds in IPOPT                               = 0.123

EXIT: Optimal Solution Found.

Numerical comparisons

Let's get the flag, the number of iterations and the objective value from the resolutions.

# from OptimalControl model
push!(data_re,
    (
        Model=:OptimalControl,
        Flag=nlp_oc_sol.status,
        Iterations=nlp_oc_sol.iter,
        Objective=nlp_oc_sol.objective,
    )
)

# from JuMP model
push!(data_re,
    (
        Model=:JuMP,
        Flag=termination_status(nlp_jp),
        Iterations=barrier_iterations(nlp_jp),
        Objective=objective_value(nlp_jp),
    )
)
2×4 DataFrame
RowModelFlagIterationsObjective
SymbolAnyInt64Float64
1OptimalControlfirst_order199.14113
2JuMPLOCALLY_SOLVED199.14113

We compare the OptimalControl and JuMP solutions in terms of the number of iterations, the $L^2$-norm of the differences in the state, control, and variable, as well as the objective values. Both absolute and relative errors are reported.

Click to unfold and get the code of the numerical comparison.
function L2_norm(T, X)
    # T and X are supposed to be one dimensional
    s = 0.0
    for i in 1:(length(T) - 1)
        s += 0.5 * (X[i]^2 + X[i + 1]^2) * (T[i + 1]-T[i])
    end
    return √(s)
end

function numerical_comparison(problem, docp, nlp_oc_sol, nlp_jp)

    # get relevant data from OptimalControl model
    ocp_sol = build_ocp_solution(docp, nlp_oc_sol) # build an ocp solution
    t_oc = time_grid(ocp_sol)
    x_oc = state(ocp_sol).(t_oc)
    u_oc = control(ocp_sol).(t_oc)
    v_oc = variable(ocp_sol)
    o_oc = objective(ocp_sol)
    i_oc = iterations(ocp_sol)

    # get relevant data from JuMP model
    t_jp = time_grid(problem, nlp_jp)
    x_jp = state(problem, nlp_jp).(t_jp)
    u_jp = control(problem, nlp_jp).(t_jp)
    o_jp = objective(problem, nlp_jp)
    v_jp = variable(problem, nlp_jp)
    i_jp = iterations(problem, nlp_jp)

    x_vars = metadata[problem][:state_name]
    u_vars = metadata[problem][:control_name]
    v_vars = metadata[problem][:variable_name]

    println("┌─ ", string(problem))
    println("│")

    # number of iterations
    println("├─  Number of iterations")
    println("│")
    println("│     OptimalControl : ", i_oc)
    println("│     JuMP           : ", i_jp)
    println("│")

    # state
    for i in eachindex(x_vars)
        xi_oc = [x_oc[k][i] for k in eachindex(t_oc)]
        xi_jp = [x_jp[k][i] for k in eachindex(t_jp)]
        L2_oc = L2_norm(t_oc, xi_oc)
        L2_jp = L2_norm(t_oc, xi_jp)
        L2_ae = L2_norm(t_oc, xi_oc-xi_jp)
        L2_re = L2_ae/(0.5*(L2_oc + L2_jp))

        println("├─  State $(x_vars[i]) (L2 norm)")
        println("│")
        #println("│     OptimalControl : ", L2_oc)
        #println("│     JuMP           : ", L2_jp)
        println("│     Absolute error : ", L2_ae)
        println("│     Relative error : ", L2_re)
        println("│")
    end

    # control
    for i in eachindex(u_vars)
        ui_oc = [u_oc[k][i] for k in eachindex(t_oc)]
        ui_jp = [u_jp[k][i] for k in eachindex(t_jp)]
        L2_oc = L2_norm(t_oc, ui_oc)
        L2_jp = L2_norm(t_oc, ui_jp)
        L2_ae = L2_norm(t_oc, ui_oc-ui_jp)
        L2_re = L2_ae/(0.5*(L2_oc + L2_jp))

        println("├─  Control $(u_vars[i]) (L2 norm)")
        println("│")
        #println("│     OptimalControl : ", L2_oc)
        #println("│     JuMP           : ", L2_jp)
        println("│     Absolute error : ", L2_ae)
        println("│     Relative error : ", L2_re)
        println("│")
    end

    # variable
    if !isnothing(v_vars)
        for i in eachindex(v_vars)
            vi_oc = v_oc[i]
            vi_jp = v_jp[i]
            vi_ae = abs(vi_oc-vi_jp)
            vi_re = vi_ae/(0.5*(abs(vi_oc) + abs(vi_jp)))

            println("├─  Variable $(v_vars[i])")
            println("│")
            #println("│     OptimalControl : ", vi_oc)
            #println("│     JuMP           : ", vi_jp)
            println("│     Absolute error : ", vi_ae)
            println("│     Relative error : ", vi_re)
            println("│")
        end
    end

    # objective
    o_ae = abs(o_oc-o_jp)
    o_re = o_ae/(0.5*(abs(o_oc) + abs(o_jp)))

    println("├─  objective")
    println("│")
    #println("│     OptimalControl : ", o_oc)
    #println("│     JuMP           : ", o_jp)
    println("│     Absolute error : ", o_ae)
    println("│     Relative error : ", o_re)
    println("│")
    println("└─")

    return nothing
end

numerical_comparison(:robot, docp, nlp_oc_sol, nlp_jp)
┌─ robot
│
├─  Number of iterations
│
│     OptimalControl : 19
│     JuMP           : 19
│
├─  State ρ (L2 norm)
│
│     Absolute error : 4.852232935874855e-15
│     Relative error : 4.0161868435980575e-16
│
├─  State dρ (L2 norm)
│
│     Absolute error : 2.165180820517422e-15
│     Relative error : 2.7139337118023713e-15
│
├─  State θ (L2 norm)
│
│     Absolute error : 1.220468383424293e-15
│     Relative error : 3.053250032884345e-16
│
├─  State dθ (L2 norm)
│
│     Absolute error : 9.428240286950934e-16
│     Relative error : 1.0772475482805366e-15
│
├─  State ϕ (L2 norm)
│
│     Absolute error : 7.338782385631124e-16
│     Relative error : 3.556388618134625e-16
│
├─  State dϕ (L2 norm)
│
│     Absolute error : 2.2400515536757674e-16
│     Relative error : 1.1965415103981847e-15
│
├─  Control uρ (L2 norm)
│
│     Absolute error : 3.4650423998647244e-14
│     Relative error : 1.1460638876849463e-14
│
├─  Control uθ (L2 norm)
│
│     Absolute error : 1.8676006958939164e-14
│     Relative error : 6.189485346790462e-15
│
├─  Control uϕ (L2 norm)
│
│     Absolute error : 2.195648078706063e-14
│     Relative error : 7.265448521101139e-15
│
├─  Variable tf
│
│     Absolute error : 0.0
│     Relative error : 0.0
│
├─  objective
│
│     Absolute error : 0.0
│     Relative error : 0.0
│
└─

Plot the solutions

Visualise states, costates, and controls from the OptimalControl and JuMP solutions:

# build an ocp solution to use the plot from OptimalControl package
ocp_sol = build_ocp_solution(docp, nlp_oc_sol)

# dimensions
n = state_dimension(ocp_sol)   # or length(metadata[:robot][:state_name])
m = control_dimension(ocp_sol) # or length(metadata[:robot][:control_name])

# from OptimalControl solution
plt = plot(
    ocp_sol;
    state_style=(color=1,),
    costate_style=(color=1, legend=:none),
    control_style=(color=1, legend=:none),
    path_style=(color=1, legend=:none),
    dual_style=(color=1, legend=:none),
    size=(816, 240*(n+m)),
    label="OptimalControl",
    leftmargin=20mm,
)
for i in 2:n
    plot!(plt[i]; legend=:none)
end

# from JuMP solution
t = time_grid(:robot, nlp_jp)     # t0, ..., tN = tf
x = state(:robot, nlp_jp)         # function of time
u = control(:robot, nlp_jp)       # function of time
p = costate(:robot, nlp_jp)       # function of time

for i in 1:n # state
    label = i == 1 ? "JuMP" : :none
    plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
end

for i in 1:n # costate
    plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
end

for i in 1:m # control
    plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
end
Example block output