Glider
This problem models the optimal descent of a glider, inspired by the COPS collection (More et al., 2001). The goal is to steer a glider from a given initial altitude and velocity to a target altitude while minimizing the horizontal distance traveled, taking into account aerodynamic lift and drag forces.
System Dynamics
The system has four states and one control:
\[x\]
: horizontal position\[y\]
: vertical position (altitude)\[v_x\]
: horizontal velocity\[v_y\]
: vertical velocity\[c_L\]
: lift coefficient (control)
The dynamics are expressed as:
\[\dot{x} = v_x\]
\[\dot{y} = v_y\]
\[\dot{v}_x = - \frac{L \, w + D \, v_x}{m \, v}\]
\[\dot{v}_y = \frac{L \, v_x - D \, w}{m \, v} - g\]
where
\[v = \sqrt{v_x^2 + w^2}, \quad w = v_y - U(r), \quad r = \left(\frac{x}{r_0} - 2.5\right)^2\]
\[U(r) = u_c (1 - r) e^{-r}\]
\[D = \frac{1}{2} \rho S (c_0 + c_1 c_L^2) v^2, \quad L = \frac{1}{2} \rho S c_L v^2\]
Here, $D$ and $L$ represent drag and lift, $m$ is the mass, $g$ is gravity, $S$ is wing area, $\rho$ the air density, and $c_0$, $c_1$, $u_c$, $r_0$ are aerodynamic parameters.
Boundary Conditions
- Initial conditions:
\[x(0) = x_0, \quad y(0) = y_0, \quad v_x(0) = v_{x0}, \quad v_y(0) = v_{y0}\]
- Final conditions:
\[y(T) = y_f, \quad v_x(T) = v_{xf}, \quad v_y(T) = v_{yf}, \quad T \ge 0\]
- State constraints:
\[x(t) \ge 0, \quad v_x(t) \ge 0\]
- Control constraints:
\[c_{L,\min} \le c_L(t) \le c_{L,\max}\]
Objective
The goal is to minimize the horizontal displacement $x(T)$:
\[J = -x(T) \to \min\]
subject to the dynamics, boundary conditions, and state/control constraints.
References
- More, J., Garbow, B., Hillstrom, K., & Watson, L. (2001). COPS: Constrained Optimization Problem Set (COPS3). Mathematics and Computer Science Division, Argonne National Laboratory. Retrieved from https://www.mcs.anl.gov/~more/cops/cops3.pdf
- Cesari, L. (1983). Optimization – Theory and Applications. Problems with Ordinary Differential Equations. Springer-Verlag.
Packages
Import all necessary packages and define DataFrames to store information about the problem and resolution results.
using OptimalControlProblems # to access the Beam model
using OptimalControl # to import the OptimalControl model
using NLPModelsIpopt # to solve the model with Ipopt
import DataFrames: DataFrame # to store data
using NLPModels # to retrieve data from the NLP solution
using Plots # to plot the trajectories
using Plots.PlotMeasures # for leftmargin, bottommargin
using JuMP # to import the JuMP model
using Ipopt # to solve the JuMP model with Ipopt
data_pb = DataFrame( # to store data about the problem
Problem=Symbol[],
Grid_Size=Int[],
Variables=Int[],
Constraints=Int[],
)
data_re = DataFrame( # to store data about the resolutions
Model=Symbol[],
Flag=Any[],
Iterations=Int[],
Objective=Float64[],
)
Initial guess
The initial guess (or first iterate) can be visualised by running the solver with max_iter=0
. Here is the initial guess.
Click to unfold and see the code for plotting the initial guess.
function plot_initial_guess(problem)
# dimensions
x_vars = metadata[problem][:state_name]
u_vars = metadata[problem][:control_name]
n = length(x_vars) # number of states
m = length(u_vars) # number of controls
# import OptimalControl model
docp = eval(problem)(OptimalControlBackend())
nlp_oc = nlp_model(docp)
# solve
nlp_oc_sol = NLPModelsIpopt.ipopt(nlp_oc; max_iter=0)
# build an optimal control solution
ocp_sol = build_ocp_solution(docp, nlp_oc_sol)
# plot the OptimalControl solution
plt = plot(
ocp_sol;
state_style=(color=1,),
costate_style=(color=1, legend=:none),
control_style=(color=1, legend=:none),
path_style=(color=1, legend=:none),
dual_style=(color=1, legend=:none),
size=(816, 220*(n+m)),
label="OptimalControl",
leftmargin=20mm,
)
for i in 2:n
plot!(plt[i]; legend=:none)
end
# import JuMP model
nlp_jp = eval(problem)(JuMPBackend())
# solve
set_optimizer(nlp_jp, Ipopt.Optimizer)
set_optimizer_attribute(nlp_jp, "max_iter", 0)
optimize!(nlp_jp)
# plot
t = time_grid(problem, nlp_jp) # t0, ..., tN = tf
x = state(problem, nlp_jp) # function of time
u = control(problem, nlp_jp) # function of time
p = costate(problem, nlp_jp) # function of time
for i in 1:n # state
label = i == 1 ? "JuMP" : :none
plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
end
for i in 1:n # costate
plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
end
for i in 1:m # control
plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
end
return plt
end
plot_initial_guess(:glider)
Solve the problem
OptimalControl model
Import the OptimalControl model and solve it.
# import DOCP model
docp = glider(OptimalControlBackend())
# get NLP model
nlp_oc = nlp_model(docp)
# solve
nlp_oc_sol = NLPModelsIpopt.ipopt(
nlp_oc;
print_level=4,
tol=1e-8,
mu_strategy="adaptive",
sb="yes",
)
Total number of variables............................: 2506
variables with only lower bounds: 1003
variables with lower and upper bounds: 501
variables with only upper bounds: 0
Total number of equality constraints.................: 2007
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
MUMPS returned INFO(1) = -9 and requires more memory, reallocating. Attempt 1
Increasing icntl[13] from 1000 to 2000.
Number of Iterations....: 959
(scaled) (unscaled)
Objective...............: -1.2479784300208266e+03 -1.2479784300208266e+03
Dual infeasibility......: 1.0161728129680679e-11 1.0161728129680679e-11
Constraint violation....: 1.8616219676914625e-12 1.8616219676914625e-12
Variable bound violation: 1.3987538460824567e-08 1.3987538460824567e-08
Complementarity.........: 9.4469600359752454e-11 9.4469600359752454e-11
Overall NLP error.......: 9.4469600359752454e-11 9.4469600359752454e-11
Number of objective function evaluations = 995
Number of objective gradient evaluations = 959
Number of equality constraint evaluations = 995
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 963
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 959
Total seconds in IPOPT = 20.299
EXIT: Optimal Solution Found.
The problem has the following numbers of steps, variables and constraints.
push!(data_pb,
(
Problem=:glider,
Grid_Size=metadata[:glider][:N],
Variables=get_nvar(nlp_oc),
Constraints=get_ncon(nlp_oc),
)
)
Row | Problem | Grid_Size | Variables | Constraints |
---|---|---|---|---|
Symbol | Int64 | Int64 | Int64 | |
1 | glider | 500 | 2506 | 2007 |
JuMP model
Import the JuMP model and solve it.
# import model
nlp_jp = glider(JuMPBackend())
# solve
set_optimizer(nlp_jp, Ipopt.Optimizer)
set_optimizer_attribute(nlp_jp, "print_level", 4)
set_optimizer_attribute(nlp_jp, "tol", 1e-8)
set_optimizer_attribute(nlp_jp, "mu_strategy", "adaptive")
set_optimizer_attribute(nlp_jp, "linear_solver", "mumps")
set_optimizer_attribute(nlp_jp, "sb", "yes")
optimize!(nlp_jp)
Total number of variables............................: 2506
variables with only lower bounds: 1003
variables with lower and upper bounds: 501
variables with only upper bounds: 0
Total number of equality constraints.................: 2007
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
MUMPS returned INFO(1) = -9 and requires more memory, reallocating. Attempt 1
Increasing icntl[13] from 1000 to 2000.
Number of Iterations....: 668
(scaled) (unscaled)
Objective...............: -1.2479784300210879e+03 -1.2479784300210879e+03
Dual infeasibility......: 7.1382839645505029e-11 7.1382839645505029e-11
Constraint violation....: 1.3072209981146443e-11 1.3072209981146443e-11
Variable bound violation: 1.3987538460824567e-08 1.3987538460824567e-08
Complementarity.........: 6.0318712720558805e-10 6.0318712720558805e-10
Overall NLP error.......: 6.0318712720558805e-10 6.0318712720558805e-10
Number of objective function evaluations = 679
Number of objective gradient evaluations = 668
Number of equality constraint evaluations = 679
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 671
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 668
Total seconds in IPOPT = 21.781
EXIT: Optimal Solution Found.
Numerical comparisons
Let's get the flag, the number of iterations and the objective value from the resolutions.
# from OptimalControl model
push!(data_re,
(
Model=:OptimalControl,
Flag=nlp_oc_sol.status,
Iterations=nlp_oc_sol.iter,
Objective=nlp_oc_sol.objective,
)
)
# from JuMP model
push!(data_re,
(
Model=:JuMP,
Flag=termination_status(nlp_jp),
Iterations=barrier_iterations(nlp_jp),
Objective=objective_value(nlp_jp),
)
)
Row | Model | Flag | Iterations | Objective |
---|---|---|---|---|
Symbol | Any | Int64 | Float64 | |
1 | OptimalControl | first_order | 959 | -1247.98 |
2 | JuMP | LOCALLY_SOLVED | 668 | -1247.98 |
We compare the OptimalControl and JuMP solutions in terms of the number of iterations, the $L^2$-norm of the differences in the state, control, and variable, as well as the objective values. Both absolute and relative errors are reported.
Click to unfold and get the code of the numerical comparison.
function L2_norm(T, X)
# T and X are supposed to be one dimensional
s = 0.0
for i in 1:(length(T) - 1)
s += 0.5 * (X[i]^2 + X[i + 1]^2) * (T[i + 1]-T[i])
end
return √(s)
end
function numerical_comparison(problem, docp, nlp_oc_sol, nlp_jp)
# get relevant data from OptimalControl model
ocp_sol = build_ocp_solution(docp, nlp_oc_sol) # build an ocp solution
t_oc = time_grid(ocp_sol)
x_oc = state(ocp_sol).(t_oc)
u_oc = control(ocp_sol).(t_oc)
v_oc = variable(ocp_sol)
o_oc = objective(ocp_sol)
i_oc = iterations(ocp_sol)
# get relevant data from JuMP model
t_jp = time_grid(problem, nlp_jp)
x_jp = state(problem, nlp_jp).(t_jp)
u_jp = control(problem, nlp_jp).(t_jp)
o_jp = objective(problem, nlp_jp)
v_jp = variable(problem, nlp_jp)
i_jp = iterations(problem, nlp_jp)
x_vars = metadata[problem][:state_name]
u_vars = metadata[problem][:control_name]
v_vars = metadata[problem][:variable_name]
println("┌─ ", string(problem))
println("│")
# number of iterations
println("├─ Number of iterations")
println("│")
println("│ OptimalControl : ", i_oc)
println("│ JuMP : ", i_jp)
println("│")
# state
for i in eachindex(x_vars)
xi_oc = [x_oc[k][i] for k in eachindex(t_oc)]
xi_jp = [x_jp[k][i] for k in eachindex(t_jp)]
L2_oc = L2_norm(t_oc, xi_oc)
L2_jp = L2_norm(t_oc, xi_jp)
L2_ae = L2_norm(t_oc, xi_oc-xi_jp)
L2_re = L2_ae/(0.5*(L2_oc + L2_jp))
println("├─ State $(x_vars[i]) (L2 norm)")
println("│")
#println("│ OptimalControl : ", L2_oc)
#println("│ JuMP : ", L2_jp)
println("│ Absolute error : ", L2_ae)
println("│ Relative error : ", L2_re)
println("│")
end
# control
for i in eachindex(u_vars)
ui_oc = [u_oc[k][i] for k in eachindex(t_oc)]
ui_jp = [u_jp[k][i] for k in eachindex(t_jp)]
L2_oc = L2_norm(t_oc, ui_oc)
L2_jp = L2_norm(t_oc, ui_jp)
L2_ae = L2_norm(t_oc, ui_oc-ui_jp)
L2_re = L2_ae/(0.5*(L2_oc + L2_jp))
println("├─ Control $(u_vars[i]) (L2 norm)")
println("│")
#println("│ OptimalControl : ", L2_oc)
#println("│ JuMP : ", L2_jp)
println("│ Absolute error : ", L2_ae)
println("│ Relative error : ", L2_re)
println("│")
end
# variable
if !isnothing(v_vars)
for i in eachindex(v_vars)
vi_oc = v_oc[i]
vi_jp = v_jp[i]
vi_ae = abs(vi_oc-vi_jp)
vi_re = vi_ae/(0.5*(abs(vi_oc) + abs(vi_jp)))
println("├─ Variable $(v_vars[i])")
println("│")
#println("│ OptimalControl : ", vi_oc)
#println("│ JuMP : ", vi_jp)
println("│ Absolute error : ", vi_ae)
println("│ Relative error : ", vi_re)
println("│")
end
end
# objective
o_ae = abs(o_oc-o_jp)
o_re = o_ae/(0.5*(abs(o_oc) + abs(o_jp)))
println("├─ objective")
println("│")
#println("│ OptimalControl : ", o_oc)
#println("│ JuMP : ", o_jp)
println("│ Absolute error : ", o_ae)
println("│ Relative error : ", o_re)
println("│")
println("└─")
return nothing
end
numerical_comparison(:glider, docp, nlp_oc_sol, nlp_jp)
┌─ glider
│
├─ Number of iterations
│
│ OptimalControl : 959
│ JuMP : 668
│
├─ State x (L2 norm)
│
│ Absolute error : 2.1727895163081932e-7
│ Relative error : 3.0970020118245135e-11
│
├─ State y (L2 norm)
│
│ Absolute error : 8.088302134357886e-8
│ Relative error : 8.503569611404758e-12
│
├─ State vx (L2 norm)
│
│ Absolute error : 7.221334456947177e-8
│ Relative error : 5.705520430950336e-10
│
├─ State vy (L2 norm)
│
│ Absolute error : 7.51566269032323e-8
│ Relative error : 5.739222242797052e-9
│
├─ Control cL (L2 norm)
│
│ Absolute error : 3.533706928355111e-8
│ Relative error : 4.2907952824793355e-9
│
├─ Variable tf
│
│ Absolute error : 1.0289880947311758e-8
│ Relative error : 1.0455598133337175e-10
│
├─ objective
│
│ Absolute error : 2.6125235308427364e-10
│ Relative error : 2.0934043954580725e-13
│
└─
Plot the solutions
Visualise states, costates, and controls from the OptimalControl and JuMP solutions:
# build an ocp solution to use the plot from OptimalControl package
ocp_sol = build_ocp_solution(docp, nlp_oc_sol)
# dimensions
n = state_dimension(ocp_sol) # or length(metadata[:glider][:state_name])
m = control_dimension(ocp_sol) # or length(metadata[:glider][:control_name])
# from OptimalControl solution
plt = plot(
ocp_sol;
state_style=(color=1,),
costate_style=(color=1, legend=:none),
control_style=(color=1, legend=:none),
path_style=(color=1, legend=:none),
dual_style=(color=1, legend=:none),
size=(816, 240*(n+m)),
label="OptimalControl",
leftmargin=20mm,
)
for i in 2:n
plot!(plt[i]; legend=:none)
end
# from JuMP solution
t = time_grid(:glider, nlp_jp) # t0, ..., tN = tf
x = state(:glider, nlp_jp) # function of time
u = control(:glider, nlp_jp) # function of time
p = costate(:glider, nlp_jp) # function of time
for i in 1:n # state
label = i == 1 ? "JuMP" : :none
plot!(plt[i], t, t -> x(t)[i]; color=2, linestyle=:dash, label=label)
end
for i in 1:n # costate
plot!(plt[n+i], t, t -> -p(t)[i]; color=2, linestyle=:dash, label=:none)
end
for i in 1:m # control
plot!(plt[2n+i], t, t -> u(t)[i]; color=2, linestyle=:dash, label=:none)
end