Indirect simple shooting
In this tutorial we present the indirect simple shooting method on a simple example.
Let us start by importing the necessary packages.
using OptimalControl # to define the optimal control problem and its flow
using OrdinaryDiffEq # to get the Flow function from OptimalControl
using NonlinearSolve # interface to NLE solvers
using MINPACK # NLE solver: use to solve the shooting equation
using Plots # to plot the solution
Optimal control problem
Let us consider the following optimal control problem:
\[\left\{ \begin{array}{l} \min \displaystyle \frac{1}{2} \int_{t_0}^{t_f} u^2(t) \, \mathrm{d} t\\[1.0em] \dot{x}(t) = \displaystyle -x(t)+\alpha x^2(t)+u(t), \quad u(t) \in \R, \quad t \in [t_0, t_f] \text{ a.e.}, \\[0.5em] x(t_0) = x_0, \quad x(t_f) = x_f, \end{array} \right.%\]
with $t_0 = 0$, $t_f = 1$, $x_0 = -1$, $x_f = 0$, $\alpha=1.5$ and $\forall\, t \in [t_0, t_f]$, $x(t) \in \R$.
const t0 = 0
const tf = 1
const x0 = -1
const xf = 0
const α = 1.5
ocp = @def begin
t ∈ [t0, tf], time
x ∈ R, state
u ∈ R, control
x(t0) == x0
x(tf) == xf
ẋ(t) == -x(t) + α * x(t)^2 + u(t)
∫( 0.5u(t)^2 ) → min
end
Boundary value problem
The pseudo-Hamiltonian of this problem is
\[ H(x,p,u) = p \, (-x+\alpha x^2+u) + p^0 u^2 /2,\]
where $p^0 = -1$ since we are in the normal case. From the Pontryagin Maximum Principle, the maximising control is given by
\[u(x, p) = p\]
since $\partial^2_{uu} H = p^0 = - 1 < 0$. Plugging this control in feedback form into the pseudo-Hamiltonian, and considering the limit conditions, we obtain the following two-points boundary value problem (BVP).
\[ \left\{ \begin{array}{l} \dot{x}(t) = \phantom{-} \nabla_p H[t] = -x(t) + \alpha x^2(t) + u(x(t), p(t)) = -x(t) + \alpha x^2(t) + p(t), \\[0.5em] \dot{p}(t) = - \nabla_x H[t] = (1 - 2 \alpha x(t))\, p(t), \\[0.5em] x(t_0) = x_0, \quad x(t_f) = x_f, \end{array} \right.\]
where $[t]~= (x(t),p(t),u(x(t), p(t)))$.
Our goal is to solve this (BVP). Solving (BVP) consists in solving the Pontryagin Maximum Principle which provides necessary conditions of optimality.
Shooting function
To achive our goal, let us first introduce the pseudo-Hamiltonian vector field
\[ \vec{H}(z,u) = \left( \nabla_p H(z,u), -\nabla_x H(z,u) \right), \quad z = (x,p),\]
and then denote by $\varphi_{t_0, x_0, p_0}(\cdot)$ the solution of the following Cauchy problem
\[\dot{z}(t) = \vec{H}(z(t), u(z(t))), \quad z(t_0) = (x_0, p_0).\]
Our goal becomes to solve
\[\pi( \varphi_{t_0, x_0, p_0}(t_f) ) = x_f,\]
where $\pi(x, p) = x$. To compute $\varphi$ with OptimalControl.jl package, we define the flow of the associated Hamiltonian vector field by:
u(x, p) = p
φ = Flow(ocp, u)
We define also the projection function on the state space.
π((x, p)) = x
Actually, $\varphi_{t_0, x_0, p_0}(\cdot)$ is also solution of
\[ \dot{z}(t) = \vec{\mathbf{H}}(z(t)), \quad z(t_0) = (x_0, p_0),\]
where $\mathbf{H}(z) = H(z, u(z))$ and $\vec{\mathbf{H}} = (\nabla_p \mathbf{H}, -\nabla_x \mathbf{H})$. This is what is actually computed by Flow
.
Now, to solve the (BVP) we introduce the shooting function:
\[ \begin{array}{rlll} S \colon & \R & \longrightarrow & \R \\ & p_0 & \longmapsto & S(p_0) = \pi( \varphi_{t_0, x_0, p_0}(t_f) ) - x_f. \end{array}\]
S(p0) = π( φ(t0, x0, p0, tf) ) - xf # shooting function
Resolution of the shooting equation
At the end, solving (BVP) is equivalent to solve $S(p_0) = 0$. This is what we call the indirect simple shooting method. We define an initial guess.
ξ = [0.1] # initial guess
MINPACK.jl
We can use NonlinearSolve.jl package or, instead, MINPACK.jl to solve the shooting equation. To compute the Jacobian of the shooting function we use DifferentiationInterface.jl with ForwardDiff.jl backend.
using DifferentiationInterface
import ForwardDiff
backend = AutoForwardDiff()
Let us define the problem to solve.
nle! = ( s, ξ) -> s[1] = S(ξ[1]) # auxiliary function
jnle! = (js, ξ) -> jacobian!(nle!, similar(ξ), js, backend, ξ) # Jacobian of nle
We are now in position to solve the problem with the hybrj
solver from MINPACK.jl through the fsolve
function, providing the Jacobian. Let us solve the problem and retrieve the initial costate solution.
indirect_sol = fsolve(nle!, jnle!, ξ; show_trace=true) # resolution of S(p0) = 0
p0_sol = indirect_sol.x[1] # costate solution
println("\ncostate: p0 = ", p0_sol)
println("shoot: |S(p0)| = ", abs(S(p0_sol)), "\n")
Iter f(x) inf-norm Step 2-norm Step time
------ -------------- -------------- --------------
1 6.712249e-02 0.000000e+00 3.093882
2 1.588980e-03 8.189120e-04 6.395932
3 3.722710e-05 4.379408e-07 0.000492
4 2.043880e-08 2.294999e-10 0.000450
5 2.629559e-13 6.925509e-17 0.000424
6 1.363970e-16 1.146337e-26 0.000439
costate: p0 = 0.07202997482167604
shoot: |S(p0)| = 1.3639701760190786e-16
Plot of the solution
The solution can be plot calling first the flow.
sol = φ((t0, tf), x0, p0_sol)
plot(sol)
In the indirect shooting method, the research of the optimal control is replaced by the computation of its associated extremal. This computation is equivalent to finding the initial covector solution to the shooting function. Let us plot the extremal in the phase space and the shooting function with the solution.
pretty_plot
— Function
pretty_plot(S, p0_sol; size=(800, 450))