LQR example

We consider the following Linear Quadratic Regulator (LQR) problem which consists in minimising

\[ \frac{1}{2} \int_{0}^{t_f} \left( x_1^2(t) + x_2^2(t) + u^2(t) \right) \, \mathrm{d}t \]

subject to the constraints

\[ \dot x_1(t) = x_2(t), \quad \dot x_2(t) = -x_1(t) + u(t), \quad u(t) \in \R\]

and the initial condition

\[ x(0) = (0,1).\]

We define $A$ and $B$ as

\[ A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \\ \end{pmatrix}\]

in order to get $\dot{x} = Ax + Bu$ and we aim to solve this optimal control problem for different values of $t_f$. First, we need to import the OptimalControl.jl package.

using OptimalControl

Then, we can define the problem parameterized by the final time tf.

x0 = [ 0
       1 ]

A  = [ 0 1
      -1 0 ]

B  = [ 0
       1 ]

function lqr(tf)

    @def ocp begin
        t ∈ [ 0, tf ], time
        x ∈ R², state
        u ∈ R, control
        x(0) == x0
        ẋ(t) == A * x(t) + B * u(t)
        ∫( 0.5(x₁(t)^2 + x₂(t)^2 + u(t)^2) ) → min
    end

    return ocp
end;

We solve the problem for $t_f \in \{3, 5, 30\}$.

solutions = []   # empty list of solutions
tfs = [3, 5, 30]

for tf ∈ tfs
    solution = solve(lqr(tf), display=false)
    push!(solutions, solution)
end

We choose to plot the solutions considering a normalized time $s=(t-t_0)/(t_f-t_0)$. We thus introduce the function rescale that rescales the time and redefine the state, costate and control variables.

function rescale(sol)

    # initial and final times
    t0 = sol.times[1]
    tf = sol.times[end]

    # s is the rescaled time between 0 and 1
    t(s)  = t0 + s * ( tf - t0 )

    # rescaled times
    sol.times = ( sol.times .- t0 ) ./ ( tf - t0 )

    # redefinition of the state, control and costate
    x = sol.state
    u = sol.control
    p = sol.costate

    sol.state   = x∘t   # s → x(t(s))
    sol.control = u∘t   # s → u(t(s))
    sol.costate = p∘t   # s → p(t(s))

    return sol
end
Nota bene

The operator is the composition operator. Hence, x∘t is the function s -> x(t(s)).

Tip

Instead of defining the function rescale, you can consider $t_f$ as a parameter and define the following optimal control problem:

@def ocp begin
    s ∈ [ 0, 1 ], time
    x ∈ R², state
    u ∈ R, control
    x(0) == x0
    ẋ(s) == tf * ( A * x(s) + B * u(s) )
    ∫( 0.5(x₁(s)^2 + x₂(s)^2 + u(s)^2) ) → min
end

Finally we choose to plot only the state and control variables.

using Plots.PlotMeasures # for leftmargin, bottommargin

# we construct the plots from the solutions with default options
plt = plot(rescale(solutions[1]))
for sol in solutions[2:end]
    plot!(plt, rescale(sol))
end

# we plot only the state and control variables and we add the legend
px1 = plot(plt[1], legend=false, xlabel="s", ylabel="x₁")
px2 = plot(plt[2], label=reshape(["tf = $tf" for tf ∈ tfs],
    (1, length(tfs))), xlabel="s", ylabel="x₂")
pu  = plot(plt[5], legend=false, xlabel="s", ylabel="u")
plot(px1, px2, pu, layout=(1, 3), size=(800, 300), leftmargin=5mm, bottommargin=5mm)
Example block output
Nota bene

We can observe that $x(t_f)$ converges to the origin as $t_f$ increases.

This documentation is not for the latest stable release, but for either the development version or an older release.
Click here to go to the documentation for the latest stable release.