Get a problem
For each problem in OptimalControlProblems, we need to use a specific backend to distinguish JuMP models from OptimalControl models.
Using JuMP models
To use JuMP models from OptimalControlProblems, first install JuMP. Then, you can import the packages.
using JuMP
using OptimalControlProblems
For instance, to get the JuMP model of the beam problem, execute:
model = beam(JuMPBackend())
A JuMP Model
├ solver: none
├ objective_sense: MIN_SENSE
│ └ objective_function_type: JuMP.QuadExpr
├ num_variables: 303
├ num_constraints: 608
│ ├ JuMP.AffExpr in MOI.EqualTo{Float64}: 204
│ ├ JuMP.VariableRef in MOI.GreaterThan{Float64}: 202
│ └ JuMP.VariableRef in MOI.LessThan{Float64}: 202
└ Names registered in the model
└ :con_x1, :con_x2, :u, :x1, :x2
Using OptimalControl models
To use OptimalControl models from OptimalControlProblems, first install OptimalControl. Then, you can import the packages.
using OptimalControl
using OptimalControlProblems
Now, to get the OptimalControl model of the beam problem, execute:
_, nlp = beam(OptimalControlBackend())
ADNLPModel - Model with automatic differentiation backend ADModelBackend{
ReverseDiffADGradient,
ReverseDiffADHvprod,
ForwardDiffADJprod,
ReverseDiffADJtprod,
SparseADJacobian,
SparseReverseADHessian,
ForwardDiffADGHjvprod,
}
Problem name: Generic
All variables: ████████████████████ 404 All constraints: ████████████████████ 305
free: ██████████⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 202 free: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
lower: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 lower: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
upper: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 upper: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
low/upp: ██████████⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 202 low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 fixed: ████████████████████ 305
infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
nnzh: ( 99.88% sparsity) 101 linear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
nonlinear: ████████████████████ 305
nnzj: ( 99.02% sparsity) 1205
Counters:
obj: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 grad: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 cons: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
cons_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 cons_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jcon: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jgrad: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jac: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jac_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jac_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jprod_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jprod_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jtprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jtprod_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jtprod_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 hess: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 hprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
jhess: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0 jhprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0
And we have also access to the DOCP information:
docp, _ = beam(OptimalControlBackend())
CTDirect.DOCP{CTDirect.Trapeze, CTModels.Model{CTModels.TimesModel{CTModels.FixedTimeModel{Int64}, CTModels.FixedTimeModel{Int64}}, CTModels.StateModel, CTModels.ControlModel, CTModels.EmptyVariableModel, OptimalControlModels.var"##246#6", CTModels.LagrangeObjectiveModel{OptimalControlModels.var"##252#7"}, CTModels.ConstraintsModel{Tuple{Vector{Real}, CTModels.var"#path_cons_nl!#59"{Int64, Vector{Int64}, Tuple{}}, Vector{Real}}, Tuple{Vector{Real}, CTModels.var"#boundary_cons_nl!#61"{Int64, Vector{Int64}, Tuple{OptimalControlModels.var"##235#4", OptimalControlModels.var"##240#5"}}, Vector{Real}}, Tuple{Vector{Real}, Vector{Int64}, Vector{Real}}, Tuple{Vector{Real}, Vector{Int64}, Vector{Real}}, Tuple{Vector{Real}, Vector{Int64}, Vector{Real}}, Dict{Symbol, Tuple{Symbol, Union{Function, OrdinalRange{<:Int64}}, AbstractVector{<:Real}, AbstractVector{<:Real}}}}}}(CTDirect.Trapeze("Implicit Trapeze aka Crank-Nicolson, 2nd order, A-stable", 4, 3, 0, true), CTModels.Model{CTModels.TimesModel{CTModels.FixedTimeModel{Int64}, CTModels.FixedTimeModel{Int64}}, CTModels.StateModel, CTModels.ControlModel, CTModels.EmptyVariableModel, OptimalControlModels.var"##246#6", CTModels.LagrangeObjectiveModel{OptimalControlModels.var"##252#7"}, CTModels.ConstraintsModel{Tuple{Vector{Real}, CTModels.var"#path_cons_nl!#59"{Int64, Vector{Int64}, Tuple{}}, Vector{Real}}, Tuple{Vector{Real}, CTModels.var"#boundary_cons_nl!#61"{Int64, Vector{Int64}, Tuple{OptimalControlModels.var"##235#4", OptimalControlModels.var"##240#5"}}, Vector{Real}}, Tuple{Vector{Real}, Vector{Int64}, Vector{Real}}, Tuple{Vector{Real}, Vector{Int64}, Vector{Real}}, Tuple{Vector{Real}, Vector{Int64}, Vector{Real}}, Dict{Symbol, Tuple{Symbol, Union{Function, OrdinalRange{<:Int64}}, AbstractVector{<:Real}, AbstractVector{<:Real}}}}}, CTDirect.DOCPFlags(false, false, true, false, false), CTDirect.DOCPdims(3, 1, 0, 2, 0, 4), CTDirect.DOCPtime(100, [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 … 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0], [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 … 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0]), CTDirect.DOCPbounds([0.0, -Inf, -Inf, -10.0, 0.0, -Inf, -Inf, -10.0, 0.0, -Inf … -Inf, -10.0, 0.0, -Inf, -Inf, -10.0, 0.0, -Inf, -Inf, -10.0], [0.1, Inf, Inf, 10.0, 0.1, Inf, Inf, 10.0, 0.1, Inf … Inf, 10.0, 0.1, Inf, Inf, 10.0, 0.1, Inf, Inf, 10.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 … 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 … 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, -1.0, 0.0]), 404, 305)