CTFlows.jl private functions
Index
Documentation
CTFlows.makeH
— MethodmakeH(
f::Dynamics,
u::ControlLaw,
f⁰::Lagrange,
p⁰::Real,
s::Real,
g::MixedConstraint,
μ::Multiplier
) -> CTFlows.var"#H#22"{Dynamics{time_dependence, variable_dependence}, ControlLaw{time_dependence1, variable_dependence1}, Lagrange{time_dependence2, variable_dependence2}, var"#s182", var"#s1821", MixedConstraint{time_dependence3, variable_dependence3}, Multiplier{time_dependence4, variable_dependence4}} where {time_dependence, variable_dependence, time_dependence1, variable_dependence1, time_dependence2, variable_dependence2, var"#s182"<:Real, var"#s1821"<:Real, time_dependence3, variable_dependence3, time_dependence4, variable_dependence4}
Constructs the Hamiltonian:
H(t, x, p) = p ⋅ f(t, x, u(t, x, p)) + s p⁰ f⁰(t, x, u(t, x, p)) + μ(t, x, p) ⋅ g(t, x, u(t, x, p))
CTFlows.makeH
— MethodmakeH(
f::Dynamics,
u::ControlLaw,
f⁰::Lagrange,
p⁰::Real,
s::Real
) -> CTFlows.var"#H#20"{Dynamics{time_dependence, variable_dependence}, ControlLaw{time_dependence1, variable_dependence1}, Lagrange{time_dependence2, variable_dependence2}, <:Real, <:Real} where {time_dependence, variable_dependence, time_dependence1, variable_dependence1, time_dependence2, variable_dependence2}
Constructs the Hamiltonian:
H(t, x, p) = p ⋅ f(t, x, u(t, x, p)) + s p⁰ f⁰(t, x, u(t, x, p))
CTFlows.makeH
— MethodmakeH(
f::Dynamics,
u::ControlLaw,
g::MixedConstraint,
μ::Multiplier
) -> CTFlows.var"#H#21"{Dynamics{time_dependence, variable_dependence}, ControlLaw{time_dependence1, variable_dependence1}, MixedConstraint{time_dependence2, variable_dependence2}, Multiplier{time_dependence3, variable_dependence3}} where {time_dependence, variable_dependence, time_dependence1, variable_dependence1, time_dependence2, variable_dependence2, time_dependence3, variable_dependence3}
Constructs the Hamiltonian:
H(t, x, p) = p ⋅ f(t, x, u(t, x, p)) + μ(t, x, p) ⋅ g(t, x, u(t, x, p))
CTFlows.makeH
— MethodmakeH(
f::Dynamics,
u::ControlLaw
) -> CTFlows.var"#18#19"{Dynamics{time_dependence, variable_dependence}, ControlLaw{time_dependence1, variable_dependence1}} where {time_dependence, variable_dependence, time_dependence1, variable_dependence1}
Constructs the Hamiltonian:
H(t, x, p) = p f(t, x, u(t, x, p))