Saturation problem in Magnetic Resonance Imaging
Time-minimal saturation problem
The time-minimal saturation problem is the following: starting from the North pole of the Bloch ball, the goal is to reach in minimum time the center of the Bloch ball, which corresponds at the final time to zero magnetization of the spin.
We define the time-minimal saturation problem as the following optimal control problem:
\[ \inf t_f, \quad \text{s.t.} \quad u(\cdot) \in \mathcal{U}, \quad t_f \ge 0 \quad \text{and} \quad q(t_f, N, u(\cdot)) = O,\]
where $N = (0, 1)$ is the North pole, where $O = (0,0)$ is the origin of the Bloch ball and where $t \mapsto q(t, q_0, u(\cdot))$ is the unique maximal solution of the 2D control system $\dot{q} = F_0(q) + u\, F_1(q)$ associated to the control $u(\cdot)$ and starting from the given initial condition $q_0$.
The inversion sequence ${\sigma_+} {\sigma_s^v}$, that is a positive bang arc followed by a singular vertical arc with zero control, is the simplest way to go from $N$ to $O$. Is it optimal?

We have the following symmetry.
Proposition. Let $(y(\cdot), z(\cdot))$, with associated control $u(\cdot)$, be a trajectory solution of $\dot{q} = F_0(q) + u\, F_1(q)$. Then, $(-y(\cdot), z(\cdot))$ with control $-u(\cdot)$ is also solution of this system.
This discrete symmetry allows us to consider only trajectories inside the domain $\{y \le 0\}$ of the Bloch ball.
In order to solve numerically the problem, we need to set the parameters. We introduce the practical cases in the following table. We give the relaxation times with the associated $(\gamma, \Gamma)$ parameters for $\omega_\mathrm{max} = 2 \pi\times 32.3$ Hz. Note that in the experiments, $\omega_\mathrm{max}$ may be chosen up to 15 000 Hz but we consider the same value as in [1].
Name | $T_1$ | $T_2$ | $\gamma$ | $\Gamma$ | $\delta=\gamma-\Gamma$ |
---|---|---|---|---|---|
Water | 2.5 | 2.5 | $1.9710e^{-03}$ | $1.9710e^{-03}$ | $0.0$ |
Cerebrospinal Fluid | 2.0 | 0.3 | $2.4637e^{-03}$ | $1.6425e^{-02}$ | $-1.3961^{-02}$ |
Deoxygenated blood | 1.35 | 0.05 | $3.6499e^{-03}$ | $9.8548e^{-02}$ | $-9.4898^{-02}$ |
Oxygenated blood | 1.35 | 0.2 | $3.6499e^{-03}$ | $2.4637e^{-02}$ | $-2.0987^{-02}$ |
Gray cerebral matter | 0.92 | 0.1 | $5.3559e^{-03}$ | $4.9274e^{-02}$ | $-4.3918^{-02}$ |
White cerebral matter | 0.78 | 0.09 | $6.3172e^{-03}$ | $5.4749e^{-02}$ | $-4.8432^{-02}$ |
Fat | 0.2 | 0.1 | $2.4637e^{-02}$ | $4.9274e^{-02}$ | $-2.4637^{-02}$ |
Brain | 1.062 | 0.052 | $4.6397e^{-03}$ | $9.4758e^{-02}$ | $-9.0118^{-02}$ |
Parietal muscle | 1.2 | 0.029 | $4.1062e^{-03}$ | $1.6991e^{-01}$ | $-1.6580^{-02}$ |
Table: Matter name with associated relaxation times in seconds and relative $(\gamma, \Gamma)$ parameters with $\omega_\mathrm{max} = 2 \pi\times 32.3$ Hz and $u_\mathrm{max} = 1$.
We consider the Deoxygenated blood case. According to Theorem 3.6 from [2] the optimal solution is of the form Bang-Singular-Bang-Singular (BSBS). The two bang arcs are with control $u=1$. The first singular arc is contained in the horizontal line $z=\gamma/2\delta$ while the second singular arc is contained in the vertical line $y=0$. We propose in the following to retrieve this result numerically.
Let us first define the parameters with the two vector fields $F_0$ and $F_1$.
import OptimalControl: ⋅
⋅(a::Number, b::Number) = a*b
# Blood case
T1 = 1.35 # s
T2 = 0.05
ω = 2π⋅32.3 # Hz
γ = 1/(ω⋅T1)
Γ = 1/(ω⋅T2)
δ = γ - Γ
zs = γ / 2δ # ordinate of the horizontal singular line
F0(y, z) = [-Γ⋅y, γ⋅(1-z)]
F1(y, z) = [-z, y]
q0 = [0, 1] # initial state: the North pole
Then, we can define the problem with OptimalControl.
using OptimalControl
ocp = @def begin
tf ∈ R, variable
t ∈ [0, tf ], time
q = (y, z) ∈ R², state
u ∈ R, control
y(t) ≤ 0.1 # for the symmetry
q(0) == q0
q(tf) == [0, 0]
-1 ≤ u(t) ≤ 1
q̇(t) == F0(q(t)...) + u(t) * F1(q(t)...)
tf → min
tf ≥ 0
end
Direct method
We start to solve the problem with a direct method. The problem is transcribed into a NLP optimization problem by OptimalControl. The NLP problem is then solved by the well-known solver Ipopt thanks to NLPModelsIpopt.
We first start with a coarse grid, with only 100 points. We provide an init consistent with a solution in the domain $y \le 0$.
using NLPModelsIpopt
N = 100
sol = solve(
ocp;
grid_size=N,
init=(state=[-0.5, 0.0], ),
disc_method=:gauss_legendre_2,
print_level=4
)
▫ This is OptimalControl version v1.1.3 running with: direct, adnlp, ipopt.
▫ The optimal control problem is solved with CTDirect version v0.17.3.
┌─ The NLP is modelled with ADNLPModels and solved with NLPModelsIpopt.
│
├─ Number of time steps⋅: 100
└─ Discretisation scheme: gauss_legendre_2
Total number of variables............................: 703
variables with only lower bounds: 1
variables with lower and upper bounds: 100
variables with only upper bounds: 101
Total number of equality constraints.................: 604
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
Number of Iterations....: 143
(scaled) (unscaled)
Objective...............: 4.2714529345077786e+01 4.2714529345077786e+01
Dual infeasibility......: 7.2743894241611429e-13 7.2743894241611429e-13
Constraint violation....: 1.1102230246251565e-16 1.1102230246251565e-16
Variable bound violation: 9.9751860105357082e-09 9.9751860105357082e-09
Complementarity.........: 1.0000006641016691e-11 1.0000006641016691e-11
Overall NLP error.......: 1.0000006641016691e-11 1.0000006641016691e-11
Number of objective function evaluations = 209
Number of objective gradient evaluations = 133
Number of equality constraint evaluations = 209
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 149
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 143
Total seconds in IPOPT = 4.903
EXIT: Optimal Solution Found.
Then, we plot the solution thanks to Plots.
using Plots
plt = plot(sol; size=(700, 500), label="N = "*string(N))
This rough approximation is then refine on a finer grid of 1000 points. This two steps resolution increases the speed of convergence. Note that we provide the previous solution as initialisation.
N = 1000
direct_sol = solve(
ocp;
grid_size=N,
init=sol,
disc_method=:gauss_legendre_2,
print_level=4,
tol=1e-12
)
▫ This is OptimalControl version v1.1.3 running with: direct, adnlp, ipopt.
▫ The optimal control problem is solved with CTDirect version v0.17.3.
┌─ The NLP is modelled with ADNLPModels and solved with NLPModelsIpopt.
│
├─ Number of time steps⋅: 1000
└─ Discretisation scheme: gauss_legendre_2
Total number of variables............................: 7003
variables with only lower bounds: 1
variables with lower and upper bounds: 1000
variables with only upper bounds: 1001
Total number of equality constraints.................: 6004
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
Number of Iterations....: 55
(scaled) (unscaled)
Objective...............: 4.2713711084173745e+01 4.2713711084173745e+01
Dual infeasibility......: 9.6456176379433600e-13 9.6456176379433600e-13
Constraint violation....: 2.7755575615628914e-16 2.7755575615628914e-16
Variable bound violation: 9.9883199489170238e-09 9.9883199489170238e-09
Complementarity.........: 5.0000406364690906e-13 5.0000406364690906e-13
Overall NLP error.......: 9.6456176379433600e-13 9.6456176379433600e-13
Number of objective function evaluations = 79
Number of objective gradient evaluations = 56
Number of equality constraint evaluations = 79
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 57
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 55
Total seconds in IPOPT = 3.523
EXIT: Optimal Solution Found.
We can compare both solutions. The BSBS structure is revelead even if the second bang arc is not clearly demonstrated.
plot!(plt, direct_sol; label="N = "*string(N), color=2)
We define a custom plot function for plotting the solution inside the Bloch ball.
Click to unfold and get the code of the custom plot function.
using Plots.PlotMeasures
function spin_plot(sol; kwargs...)
y2 = cos(asin(zs))
y1 = -y2
t = time_grid(sol)
q = state(sol)
y = t -> q(t)[1]
z = t -> q(t)[2]
u = control(sol)
# styles
Bloch_ball_style = (seriestype=[:shape, ], color=:grey, linecolor=:black,
legend=false, fillalpha=0.1, aspect_ratio=1)
state_style = (label=:none, linewidth=2, color=1)
initial_point_style = (seriestype=:scatter, color=:1, linewidth=0)
axis_style = (color=:black, linewidth=0.5)
control_style = (label=:none, linewidth=2, color=1)
# state trajectory in the Bloch ball
θ = LinRange(0, 2π, 100)
state_plt = plot(cos.(θ), sin.(θ); Bloch_ball_style...) # Bloch ball
plot!(state_plt, [-1, 1], [ 0, 0]; axis_style...) # horizontal axis
plot!(state_plt, [ 0, 0], [-1, 1]; axis_style...) # vertical axis
plot!(state_plt, [y1, y2], [zs, zs]; linestyle=:dash, axis_style...) # singular line
plot!(state_plt, y.(t), z.(t); state_style...)
plot!(state_plt, [0], [1]; initial_point_style...)
plot!(state_plt; xlims=(-1.1, 0.1), ylims=(-0.1, 1.1), xlabel="y", ylabel="z")
# control
control_plt = plot(legend=false)
plot!(control_plt, [ 0, t[end]], [1, 1]; linestyle=:dash, axis_style...) # upper bound
plot!(control_plt, [ 0, t[end]], [0, 0]; linestyle=:dash, axis_style...)
plot!(control_plt, [ 0, 0], [-0.1, 1.1]; axis_style...)
plot!(control_plt, [ t[end], t[end]], [-0.1, 1.1]; axis_style...)
plot!(control_plt, t, u.(t); control_style...)
plot!(control_plt; ylims=(-0.1, 1.1), xlabel="t", ylabel="u")
return plot(state_plt, control_plt; layout=(1, 2), leftmargin=15px, bottommargin=15px, kwargs...)
end
Below, we plot the solution inside the Bloch ball. The first bang arc drives the trajectory to the horizontal singular line $z = \gamma / (2\delta)$, shown as a dashed line. The second bang arc is very short, which makes it difficult to capture accurately unless the grid is sufficiently fine. In the next section, we introduce an indirect method to refine this approximation.
spin_plot(direct_sol; size=(800, 400))
To make the indirect method converge we need a good initial guess. We extract below the useful information from the direct solution to provide an initial guess for the indirect method. We need the initial costate together with the switching times between bang and singular arcs and the final time.
t = time_grid(direct_sol)
q = state(direct_sol)
p = costate(direct_sol)
u = control(direct_sol)
tf = variable(direct_sol)
t0 = 0
pz0 = p(t0)[2]
t_bang_1 = t[ (abs.(u.(t)) .≥ 0.5) .& (t .≤ 5)]
t_bang_2 = t[ (abs.(u.(t)) .≥ 0.5) .& (t .≥ 35)]
t1 = max(t_bang_1...)
t2 = min(t_bang_2...)
t3 = max(t_bang_2...)
q1, p1 = q(t1), p(t1)
q2, p2 = q(t2), p(t2)
q3, p3 = q(t3), p(t3)
println("pz0 = ", pz0)
println("t1 = ", t1)
println("t2 = ", t2)
println("t3 = ", t3)
println("tf = ", tf)
pz0 = -10.138145104720211
t1 = 1.6231210211986022
t2 = 37.118214932146984
t3 = 37.545352042988725
tf = 42.713711084173745
Indirect method
We introduce the pseudo-Hamiltonian
\[H(q, p, u) = H_0(q, p) + u\, H_1(q, p)\]
where $H_0(q, p) = p \cdot F_0(q)$ and $H_1(q, p) = p \cdot F_1(q)$ are both Hamiltonian lifts. According to the maximisation condition from the Pontryagin Maximum Principle (PMP), a bang arc occurs when $H_1$ is nonzero and of constant sign along the arc. On the contrary the singular arcs are contained in $H_1 = 0$. If $t \mapsto H_1(q(t), p(t)) = 0$ along an arc then its derivative is also zero. Thus, along a singular arc we have also
\[\frac{\mathrm{d}}{\mathrm{d}t} H_1(q(t), p(t)) = \{H_0, H_1\}(q(t), p(t)) = 0,\]
where $\{H_0, H_1\}$ is the Poisson bracket of $H_0$ and $H_1$.
Let $F_0$, $F_1$ be two smooth vector fields on a smooth manifold $M$ and $f$ a smooth function on $M$. Let $x$ be local coordinates. The Lie bracket of $F_0$ and $F_1$ is given by
\[ [F_0,F_1] \coloneqq F_0 \cdot F_1 - F_1 \cdot F_0,\]
with $(F_0 \cdot F_1)(x) = \mathrm{d} F_1(x) \cdot F_0(x)$. The Lie derivative $\mathcal{L}_{F_0} f$ of $f$ along $F_0$ is simply written $F_0\cdot f$. Denoting $H_0$, $H_1$ the Hamiltonian lifts of $F_0$, $F_1$, then the Poisson bracket of $H_0$ and $H_1$ is
\[ \{H_0,H_1\} \coloneqq \vec{H_0} \cdot H_1.\]
We also use the notation $H_{01}$ (resp. $F_{01}$) to write the bracket $\{H_0,H_1\}$ (resp. $[F_0,F_1]$) and so forth. Besides, since $H_0$, $H_1$ are Hamiltonian lifts, we have $\{H_0,H_1\}= p \cdot [F_0,F_1]$.
We define a function for plotting the switching function $t \mapsto H_1(q(t), p(t))$ and its derivative along the solution computed by the direct method.
Click to unfold and get the code of the function.
function switching_plot(sol, H1, H01; kwargs...)
t = time_grid(sol)
u = control(sol)
q = state(sol)
p = costate(sol)
tf = t[end]
φ(t) = H1(q(t), p(t)) # switching function
dφ(t) = H01(q(t), p(t)) # derivative of the switching function
# styles
axis_style = (color=:black, linewidth=0.5, label=false)
control_style = (label=:none, linewidth=2, color=1)
# switching function
switching_plt = plot()
plot!(switching_plt, [0, tf], [0, 0]; axis_style...)
plot!(switching_plt, t, φ, label="H1(q(t), p(t))", xlabel="t", linewidth=2)
plot!(switching_plt; xlims=(0, tf))
# derivative of the switching function
dswitching_plt = plot()
plot!(dswitching_plt, [0, tf], [0, 0]; axis_style...)
plot!(dswitching_plt, t, dφ, label="H01(q(t), p(t))", xlabel="t", linewidth=2)
plot!(dswitching_plt; xlims=(0, tf))
# control
control_plt = plot(legend=false)
plot!(control_plt, [ 0, t[end]], [1, 1]; linestyle=:dash, axis_style...) # upper bound
plot!(control_plt, [ 0, t[end]], [0, 0]; linestyle=:dash, axis_style...)
plot!(control_plt, [ 0, 0], [-0.1, 1.1]; axis_style...)
plot!(control_plt, [ t[end], t[end]], [-0.1, 1.1]; axis_style...)
plot!(control_plt, t, u.(t); control_style...)
plot!(control_plt; ylims=(-0.1, 1.1), xlabel="t", ylabel="u")
return plot(switching_plt, dswitching_plt, control_plt; layout=(3, 1), kwargs...)
end
We can notice on the plots below that maximisation condition from the PMP is not satisfied. We can see that the switching function becomes negative along the first bang arc but there is no switching from the control plot. Besides, we can see that along the first singular arc, the switching function is not always zero.
H0 = Lift(q -> F0(q...))
H1 = Lift(q -> F1(q...))
H01 = @Lie { H0, H1 }
switching_plot(direct_sol, H1, H01; size=(700, 800))
We aim to compute a better approximation of the solution thanks to indirect shooting. To do so, we need to define the three different flows associated to the three different control laws in feedback form: bang control, singular control along the horizontal line and singular control along the vertical line.
Let us recall that $\delta = \gamma - \Gamma$. Then, for any $q = (y,z)$ we have:
\[ \begin{aligned} F_{01}(q) &= -(\gamma - \delta z) \frac{\partial}{\partial y} + \delta y \frac{\partial}{\partial z}, \\[0.5em] F_{001}(q) &= \left( \gamma\, (\gamma - 2\Gamma) - \delta^2 z\right)\frac{\partial}{ \partial y} + \delta^2 y \frac{\partial}{\partial z}, \\[0.5em] F_{101}(q) &= 2 \delta y \frac{\partial}{\partial y} + (\gamma - 2 \delta z) \frac{\partial}{\partial z}. \end{aligned}\]
Along a singular arc, we have $H_1 = H_{01} = 0$, that is $p \cdot F_1 = p \cdot F_{01} = 0$. Since, $p$ is of dimension 2 and is nonzero, then we have $\det(F_1, F_{01}) = y ( \gamma - 2 \delta z) = 0$. This gives us the two singular lines.
Differentiating $t \mapsto H_1(q(t), p(t)) = 0$ a second time along a singular arc gives
\[ H_{001}(q(t), p(t)) + u(t)\, H_{101}(q(t), p(t)) = 0,\]
that is $p(t)$ is orthogonal to $F_{001}(q(t)) + u(t)\, F_{101}(q(t))$. Hence, the singular control is given by
\[ \det(F_1(q(t)), F_{001}(q(t))) + u(t) \, \det(F_1(q(t)), F_{101}(q(t))) = 0.\]
For $y=0$, $\det(F_1(q), F_{101}(q))$ is zero and thus the singular control is zero. We denote it $u_0 \coloneqq 0$. Along the horizontal singular line, that is for $z=\gamma/2\delta$, the control is given by
\[ u_s(y) \coloneqq \gamma (2\Gamma - \gamma) / (2 \delta y).\]
Note that we could have defined the singular control with the Hamiltonian lifts $H_{001}$ and $H_{101}$. See the Goddard tutorial for an example of such a computation.
using OrdinaryDiffEq
# Controls
u0 = 0 # off control: vertical singular line
u1 = 1 # positive bang control
us(y) = γ⋅(2Γ−γ)/(2δ⋅y) # singular control: horizontal line
# Flows
options = (abstol=1e-14, reltol=1e-10)
f0 = Flow(ocp, (q, p, tf) -> u0 ; options...)
f1 = Flow(ocp, (q, p, tf) -> u1 ; options...)
fs = Flow(ocp, (q, p, tf) -> us(q[1]); options...)
With the previous flows, we can define the shooting function considering the sequence given by the direct method: Bang-Singular-Bang-Singular. There are 3 switching times $t_1$, $t_2$ and $t_3$. The final time $t_f$ is unknown such as the initial costate. To reduce the sensitivy of the shooting function we also consider the states and costates at the switching times as unknowns and we add some matching conditions.
Note that the final time is free, hence, in the normal case, $H = -p^0 = 1$ along the solution of the PMP. Considering this condition at the initial time ($H$ is constant since the system is autonomous), we obtain $p_y(0) = -1$. At the entrance of the singular arcs, we must satisfy $H_1 = H_{01} = 0$. For the first singular arc, this leads to the conditions
\[ - p_y(t_1) z_s + p_z(t_1) y(t_1) = z(t_1) - z_s = 0.\]
At the entrance of the second singular arc, we have
\[ p_y(t_3) = y(t_3) = 0.\]
Finally, the solution has to satisfy the final condition $q(t_f) = (y(t_f), z(t_f)) = (0, 0)$. Since, the last singular arc is contained in $y=0$, the condition $y(t_f)=0$ is redundant and so we only need to check that $z(t_f) = 0$.
Altogether, this leads to the following shooting function.
function shoot!(s, pz0, t1, t2, t3, tf, q1, p1, q2, p2, q3, p3)
p0 = [-1, pz0]
q1_, p1_ = f1(t0, q0, p0, t1)
q2_, p2_ = fs(t1, q1, p1, t2)
q3_, p3_ = f1(t2, q2, p2, t3)
qf , pf = f0(t3, q3, p3, tf)
s[1] = - p1[1] ⋅ zs + p1[2] ⋅ q1[1] # H1 = H01 = 0 on the horizontal
s[2] = q1[2] - zs # singular line, z=zs
s[3] = p3[1] # H1 = H01 = 0 on the vertical
s[4] = q3[1] # singular line, y=0
s[5] = qf[2] # z(tf) = 0
# matching conditions
s[ 6: 7] = q1 - q1_
s[ 8: 9] = p1 - p1_
s[10:11] = q2 - q2_
s[12:13] = p2 - p2_
s[14:15] = q3 - q3_
s[16:17] = p3 - p3_
end
We are now in position to solve the shooting equations. Due to the sensitivity of the first singular arc, we need to improve the initial guess obtained from the direct method to make the Newton solver converge. To do so, we set for the initial guess $z(t_1) = z_s$ and $p_z(t_1) = p_y(t_1) z_s / y(t_1)$.
We can see below from the norm of the shooting function that the initial guess is not very accurate.
# we refine the initial guess to make the Newton solver converge
q1[2] = zs
p1[2] = p1[1] ⋅ zs / q1[1]
# Norm of the shooting function at initial guess
using LinearAlgebra: norm
s = similar([pz0], 17)
shoot!(s, pz0, t1, t2, t3, tf, q1, p1, q2, p2, q3, p3)
println("Norm of the shooting function: ‖s‖ = ", norm(s), "\n")
Norm of the shooting function: ‖s‖ = 18.361555100489344
We can use the MINPACK.jl package to solve the shooting equation. To compute the Jacobian of the shooting function we use the DifferentiationInterface.jl package with ForwardDiff.jl backend.
using DifferentiationInterface
import ForwardDiff
backend = AutoForwardDiff()
Let us define the problem to solve.
# auxiliary function with aggregated inputs
shoot!(s, ξ) = shoot!(s, ξ[1], ξ[2:5]..., ξ[6:7], ξ[8:9],
ξ[10:11], ξ[12:13], ξ[14:15], ξ[16:17])
# Jacobian of the (auxiliary) shooting function
jshoot!(js, ξ) = jacobian!(shoot!, similar(ξ), js, backend, ξ)
We are now in position to solve the problem with the hybrj
solver from MINPACK.jl through the fsolve
function, providing the Jacobian. Let us solve the problem and retrieve the initial contate and the times (switching and final) from the solution.
using MINPACK
# initial guess
ξ = [ pz0 ; t1 ; t2 ; t3 ; tf ; q1 ; p1 ; q2 ; p2 ; q3 ; p3]
# resolution of S(ξ) = 0
indirect_sol = fsolve(shoot!, jshoot!, ξ, show_trace=true)
# we retrieve the costate solution together with the times
pz0 = indirect_sol.x[1]
t1 = indirect_sol.x[2]
t2 = indirect_sol.x[3]
t3 = indirect_sol.x[4]
tf = indirect_sol.x[5]
q1 = indirect_sol.x[6:7]
p1 = indirect_sol.x[8:9]
q2 = indirect_sol.x[10:11]
p2 = indirect_sol.x[12:13]
q3 = indirect_sol.x[14:15]
p3 = indirect_sol.x[16:17]
println("pz0 = ", pz0)
println("t1 = ", t1)
println("t2 = ", t2)
println("t3 = ", t3)
println("tf = ", tf)
# Norm of the shooting function at solution
s = similar([pz0], 17)
shoot!(s, pz0, t1, t2, t3, tf, q1, p1, q2, p2, q3, p3)
println("Norm of the shooting function: ‖s‖ = ", norm(s), "\n")
Iter f(x) inf-norm Step 2-norm Step time
------ -------------- -------------- --------------
1 1.729122e+01 0.000000e+00 0.233449
2 9.461468e-01 3.704268e+01 31.985831
3 2.839417e-01 7.649105e+00 0.004164
4 2.196746e-01 6.189414e+00 0.004116
5 4.899687e-02 1.555075e+01 0.004046
6 1.317601e-01 6.220299e+01 0.003931
7 3.647552e-01 1.399561e+02 0.004005
8 4.266673e-02 3.889313e+00 0.052066
9 1.862372e-01 1.555075e+01 0.004261
10 3.906691e-02 3.889347e+00 0.004261
11 6.814071e-02 3.887687e+00 0.004280
12 1.408918e-02 9.722099e-01 0.004234
13 4.460910e-02 3.887687e+00 0.004350
14 9.719317e-03 9.720021e-01 0.004358
15 4.894523e-02 3.887687e+00 0.004342
16 1.037975e-02 9.720452e-01 0.004248
17 1.722110e-02 9.719218e-01 0.004340
18 3.374491e-03 2.429959e-01 0.004450
19 1.050803e-02 9.719218e-01 0.004301
20 2.514214e-03 2.429847e-01 0.004338
21 1.236260e-02 9.719218e-01 0.005304
22 2.699892e-03 2.429877e-01 0.006105
23 4.405108e-03 2.429804e-01 0.006158
24 1.140801e-03 6.074605e-02 0.006111
25 2.529561e-03 2.429804e-01 0.006108
26 8.971382e-04 6.074537e-02 0.018664
27 3.105367e-03 2.429804e-01 0.004269
28 6.886897e-04 6.074555e-02 0.004252
29 1.114999e-03 6.074511e-02 0.004191
30 5.937321e-04 1.518634e-02 0.004264
31 6.886842e-04 6.074511e-02 0.004174
32 5.243157e-04 1.518629e-02 0.004152
33 7.780883e-04 6.074511e-02 0.004239
34 4.570424e-04 1.518630e-02 0.004220
35 7.861590e-04 6.074511e-02 0.004350
36 3.925009e-04 1.518631e-02 0.004208
37 7.834904e-04 6.074511e-02 0.004203
38 3.308893e-04 1.518631e-02 0.004264
39 7.850448e-04 6.074511e-02 0.004959
40 2.723456e-04 1.518631e-02 0.014794
41 7.867550e-04 6.074511e-02 0.004267
42 2.170459e-04 1.518631e-02 0.004313
43 7.883592e-04 6.074511e-02 0.004269
44 1.793299e-04 1.518631e-02 0.004309
45 7.899762e-04 6.074511e-02 0.004288
46 1.787759e-04 1.518631e-02 0.004432
47 2.839177e-04 1.518628e-02 0.004357
48 1.589777e-04 3.796573e-03 0.004239
49 1.503008e-04 1.518628e-02 0.004242
50 1.506639e-04 3.796570e-03 0.004298
51 1.968768e-04 1.518628e-02 0.004422
52 1.424838e-04 3.796571e-03 0.012582
53 1.995271e-04 1.518628e-02 0.004280
54 1.342526e-04 3.796571e-03 0.004198
55 1.981819e-04 1.518628e-02 0.004169
56 1.259569e-04 3.796571e-03 0.004148
57 1.983571e-04 1.518628e-02 0.004130
58 1.175940e-04 3.796571e-03 0.004129
59 1.986120e-04 1.518628e-02 0.004161
60 1.091543e-04 3.796571e-03 0.004136
61 1.988165e-04 1.518628e-02 0.004195
62 1.006264e-04 3.796571e-03 0.004279
63 1.990215e-04 1.518628e-02 0.010366
64 9.199662e-05 3.796571e-03 0.004290
65 7.942206e-05 3.796569e-03 0.004319
66 8.723076e-05 9.491426e-04 0.004263
67 7.506890e-05 3.796569e-03 0.004299
68 1.671472e-04 1.518628e-02 0.004259
69 6.666613e-05 3.796571e-03 0.004321
70 6.134117e-05 9.491423e-04 0.026285
71 4.993157e-05 3.796569e-03 0.004174
72 5.647322e-05 9.491424e-04 0.004176
73 4.774480e-05 3.796569e-03 0.004126
74 5.160141e-05 9.491424e-04 0.004114
75 4.774434e-05 3.796569e-03 0.004112
76 4.672440e-05 9.491424e-04 0.004152
77 4.776050e-05 3.796569e-03 0.009522
78 4.183995e-05 9.491424e-04 0.004266
79 4.777701e-05 3.796569e-03 0.004302
80 3.694530e-05 9.491424e-04 0.004293
81 4.779395e-05 3.796569e-03 0.004319
82 3.203693e-05 9.491424e-04 0.004257
83 4.781139e-05 3.796569e-03 0.004444
84 2.711018e-05 9.491424e-04 0.004400
85 4.782921e-05 3.796569e-03 0.004242
86 2.215861e-05 9.491424e-04 0.004233
87 4.784746e-05 3.796569e-03 0.004308
88 1.717278e-05 9.491424e-04 0.012668
89 4.786615e-05 3.796569e-03 0.004261
90 1.213745e-05 9.491424e-04 0.004166
91 4.788530e-05 3.796569e-03 0.004184
92 8.099735e-06 9.491424e-04 0.004134
93 2.324557e-05 1.548720e-03 0.004149
94 2.321026e-06 7.302771e-05 0.004125
95 2.874311e-06 7.491454e-05 0.004165
96 1.820909e-08 1.764393e-10 0.004188
97 4.602427e-09 9.546174e-12 0.004175
98 2.378469e-12 3.583026e-13 0.004265
pz0 = -10.103027162172843
t1 = 1.6450509469600776
t2 = 37.323981285581745
t3 = 37.58077357861729
tf = 42.71370875363171
Norm of the shooting function: ‖s‖ = 2.6791056126541833e-12
Let us plot the solution from the indirect method. We can notice that the second bang arc is well captured by the indirect method compared to the direct method.
# concatenation of the flows with the switching times
f = f1 * (t1, fs) * (t2, f1) * (t3, f0)
# computation of the solution: state, costate, control
indirect_sol = f((t0, tf), q0, [-1, pz0])
# plot in the Bloch ball
spin_plot(indirect_sol; size=(800, 400))
From the following plot, we can conclude that the maximisation condition from the PMP is now well satisfied compared to the solution obtained from the direct method.
plt = switching_plot(indirect_sol, H1, H01; size=(700, 800))
lens!(plt, [37.2, 37.7], [ 0, 4e-5], inset = (1, bbox(0.3, 0.2, 0.3, 0.4)))
lens!(plt, [37.2, 37.7], [-5e-4, 5e-4], inset = (2, bbox(0.3, 0.3, 0.3, 0.4)))
lens!(plt, [37.2, 37.7], [ 0.5, 1.1], inset = (3, bbox(0.3, 0.2, 0.3, 0.4)))
- 1B. Bonnard, O. Cots, S. Glaser, M. Lapert, D. Sugny & Y. Zhang, *Geometric optimal control of the contrast imaging problem in nuclear magnetic resonance, IEEE Trans. Automat. Control, 57 (2012), no. 8, 1957–1969.
- 2Bonnard, B.; Cots, O.; Rouot, J.; Verron, T. Time minimal saturation of a pair of spins and application in magnetic resonance imaging. Mathematical Control and Related Fields, 2020, 10 (1), pp.47-88. https://inria.hal.science/hal-01779377